Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.4 Differentiability and Tangent Planes - Exercises - Page 789: 31

Answer

Estimation of the change in $I$: $\Delta I \simeq 0.5644$

Work Step by Step

We are given $I = \frac{W}{{{H^2}}}$. The partial derivatives are $\frac{{\partial I}}{{\partial W}} = \frac{1}{{{H^2}}}$, ${\ \ \ }$ $\frac{{\partial I}}{{\partial H}} = - \frac{{2W}}{{{H^3}}}$ At $\left( {W,H} \right) = \left( {34,1.3} \right)$, we have $\frac{{\partial I}}{{\partial W}}{|_{\left( {34,1.3} \right)}} = \frac{1}{{{{\left( {1.3} \right)}^2}}}$, ${\ \ \ }$ $\frac{{\partial I}}{{\partial H}}{|_{\left( {34,1.3} \right)}} = - \frac{{2\cdot34}}{{{{\left( {1.3} \right)}^3}}}$ If $\left( {W,H} \right)$ changes from $\left( {34,1.3} \right)$ to $\left( {36,1.32} \right)$, then $\Delta W = 36 - 34 = 2$, ${\ \ \ }$ $\Delta H = 1.32 - 1.3 = 0.02$ Using the linear approximation, Eq. (5) to estimate the change in $I$ we get $\Delta I \approx \frac{{\partial I}}{{\partial W}}{|_{\left( {34,1.3} \right)}}\Delta W + \frac{{\partial I}}{{\partial H}}{|_{\left( {34,1.3} \right)}}\Delta H$ $\Delta I \simeq \frac{1}{{{{\left( {1.3} \right)}^2}}}\cdot2 - \frac{{2\cdot34}}{{{{\left( {1.3} \right)}^3}}}\cdot0.02 \simeq 0.5644$ Estimation of the change in $I$: $\Delta I \simeq 0.5644$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.