Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.4 Differentiability and Tangent Planes - Exercises - Page 789: 14

Answer

Using the linear approximation: $\frac{{7.98}}{{2.02}} \simeq 3.95$ Using a calculator: $\frac{{7.98}}{{2.02}} \simeq 3.9505$

Work Step by Step

We are given $f\left( {x,y} \right) = x{\left( {1 + y} \right)^{ - 1}}$. The partial derivatives are ${f_x} = {\left( {1 + y} \right)^{ - 1}}$, ${\ \ \ }$ ${f_y} = - x{\left( {1 + y} \right)^{ - 2}}$ According to Eq. (3), the linear approximation to $f\left( {x,y} \right)$ is given by $f\left( {a + h,b + k} \right) \approx f\left( {a,b} \right) + {f_x}\left( {a,b} \right)h + {f_y}\left( {a,b} \right)k$ Thus, we obtain the form: $f\left( {a + h,b + k} \right) \approx a{\left( {1 + b} \right)^{ - 1}} + {\left( {1 + b} \right)^{ - 1}}h - a{\left( {1 + b} \right)^{ - 2}}k$ $f\left( {8 + h,1 + k} \right) \approx 8{\left( {1 + 1} \right)^{ - 1}} + {\left( {1 + 1} \right)^{ - 1}}h - 8{\left( {1 + 1} \right)^{ - 2}}k$ (1) ${\ \ \ \ }$ $f\left( {8 + h,1 + k} \right) \approx 4 + \frac{h}{2} - 2k$ Next, estimate $\frac{{7.98}}{{2.02}}$ We can write $\frac{{7.98}}{{2.02}} = 7.98{\left( {1 + 1.02} \right)^{ - 1}}$. Let $\left( {x,y} \right) = \left( {7.98,1.02} \right)$. Thus, $\frac{{7.98}}{{2.02}} = 7.98{\left( {1 + 1.02} \right)^{ - 1}} = f\left( {7.98,1.02} \right)$ For $\left( {a,b} \right) = \left( {8,1} \right)$ and $\left( {h,k} \right) = \left( { - 0.02,0.02} \right)$ we have $x = a + h = 7.98$ ${\ \ }$ and ${\ \ }$ $y = b + k = 1.02$ Using equation (1) we obtain $\frac{{7.98}}{{2.02}} = f\left( {7.98,1.02} \right) \simeq 4 + \frac{{ - 0.02}}{2} - 2\cdot0.02$ $\frac{{7.98}}{{2.02}} = f\left( {7.98,1.02} \right) \simeq 4 - 0.01 - 0.04$ $\frac{{7.98}}{{2.02}} \simeq 3.95$ Using a calculator: $\frac{{7.98}}{{2.02}} \simeq 3.9505$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.