Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.4 Differentiability and Tangent Planes - Exercises - Page 789: 28

Answer

$f\left( {8.01,1.99,2.01} \right) = \frac{{8.01}}{{\sqrt {\left( {1.99} \right)\left( {2.01} \right)} }} \simeq 4.005$ Using a calculator: $\frac{{8.01}}{{\sqrt {\left( {1.99} \right)\left( {2.01} \right)} }} \simeq 4.00505$.

Work Step by Step

Let $f\left( {x,y,z} \right) = \frac{x}{{\sqrt {yz} }}$. So, the partial derivatives are ${f_x} = \frac{1}{{\sqrt {yz} }}$, ${\ \ \ }$ ${f_y} = - \frac{{xz}}{{2{{\left( {yz} \right)}^{3/2}}}}$, ${\ \ \ }$ ${f_z} = - \frac{{xy}}{{2{{\left( {yz} \right)}^{3/2}}}}$ We can consider $\frac{{8.01}}{{\sqrt {\left( {1.99} \right)\left( {2.01} \right)} }}$ as a value of $f\left( {x,y} \right) = \frac{x}{{\sqrt {yz} }}$. Thus, $f\left( {8.01,1.99,2.01} \right) = \frac{{8.01}}{{\sqrt {\left( {1.99} \right)\left( {2.01} \right)} }}$ Using the linear approximation in three variables, we have $f\left( {a + h,b + k,c + m} \right) \approx f\left( {a,b,c} \right) + {f_x}\left( {a,b,c} \right)h + {f_y}\left( {a,b,c} \right)k + {f_z}\left( {a,b,c} \right)m$ For $\left( {a,b,c} \right) = \left( {8,2,2} \right)$ and $\left( {h,k,m} \right) = \left( {0.01, - 0.01,0.01} \right)$, we get $f\left( {8.01,1.99,2.01} \right) \approx f\left( {8,2,2} \right) + {f_x}\left( {8,2,2} \right)\cdot0.01 + {f_y}\left( {8,2,2} \right)\cdot\left( { - 0.01} \right) + {f_z}\left( {8,2,2} \right)\cdot0.01$ $f\left( {8.01,1.99,2.01} \right) \simeq 4 + \frac{1}{2}\cdot0.01 - 1\cdot\left( { - 0.01} \right) - 1\cdot0.01$ $f\left( {8.01,1.99,2.01} \right) = \frac{{8.01}}{{\sqrt {\left( {1.99} \right)\left( {2.01} \right)} }} \simeq 4.005$ Using a calculator, we get $\frac{{8.01}}{{\sqrt {\left( {1.99} \right)\left( {2.01} \right)} }} \simeq 4.00505$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.