Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.4 Differentiability and Tangent Planes - Exercises - Page 789: 13

Answer

The results: $\begin{array}{*{20}{c}} {Method}&{f\left( {2.01,1.02} \right)}&{f\left( {1.97,1.01} \right)}\\ {Linearization}&{4.28}&4\\ {Calculator}&{4.28739}&{3.9985} \end{array}$

Work Step by Step

The linearization $L\left( {x,y} \right)$ of $f\left( {x,y} \right) = {x^2}{y^3}$ is given by $L\left( {x,y} \right) = f\left( {a,b} \right) + {f_x}\left( {a,b} \right)\left( {x - a} \right) + {f_y}\left( {a,b} \right)\left( {y - b} \right)$ At $\left( {a,b} \right) = \left( {2,1} \right)$, we get $L\left( {x,y} \right) = f\left( {2,1} \right) + {f_x}\left( {2,1} \right)\left( {x - 2} \right) + {f_y}\left( {2,1} \right)\left( {y - 1} \right)$ $L\left( {x,y} \right) = 4 + 4\left( {x - 2} \right) + 12\left( {y - 1} \right)$ $L\left( {x,y} \right) = 4x + 12y - 16$ 1. Estimate $f\left( {2.01,1.02} \right)$ For $\Delta x = 0.01$ and $\Delta y = 0.02$, the desired estimate is $L\left( {x,y} \right) = 4x + 12y - 16$ $f\left( {2.01,1.02} \right) \approx L\left( {2.01,1.02} \right) = 4\cdot2.01 + 12\cdot1.02 - 16$ $f\left( {2.01,1.02} \right) \approx 4.28$ Using a calculator: $f\left( {2.01,1.02} \right) \approx 4.28739$ 2. Estimate $f\left( {1.97,1.01} \right)$ The desired estimate is $L\left( {x,y} \right) = 4x + 12y - 16$ $f\left( {1.97,1.01} \right) \approx L\left( {1.97,1.01} \right) = 4\cdot1.97 + 12\cdot1.01 - 16$ $f\left( {1.97,1.01} \right) \approx 4$ Using a calculator: $f\left( {1.97,1.01} \right) \approx 3.9985$ In summary: $\begin{array}{*{20}{c}} {Method}&{f\left( {2.01,1.02} \right)}&{f\left( {1.97,1.01} \right)}\\ {Linearization}&{4.28}&4\\ {Calculator}&{4.28739}&{3.9985} \end{array}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.