Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.4 Differentiability and Tangent Planes - Exercises - Page 789: 10

Answer

$$z=\frac{8}{3} x-\frac{2}{3} y+(\ln 3-2) $$

Work Step by Step

Given $$f(x, y)=\ln \left(4 x^{2}-y^{2}\right), \quad(1,1)$$ Since \begin{align*} f(x,y)&=\ln \left(4 x^{2}-y^{2}\right) \ \ \ \ & f(1,1)&=\ln 3 \\ f_x(x,y)&=\frac{8x}{4 x^{2}-y^{2}} \ \ \ \ & f_x(1,1)&= \frac{8}{3} \\ f_y(x,y)&= \frac{-2y}{4 x^{2}-y^{2}} \ \ \ \ & f_y(1,1)&= \frac{-2}{3}\\ \end{align*} Then the tangent plane at $(1,1)$ is given by \begin{align*} z&= f(1,1)+f_{x}(1,1)(x-1)+f_{y}(1,1)(y-1)\\ &= \ln 3+\frac{8}{3}(x-1)+\frac{-2}{3}(y-1)\\ &=\frac{8}{3} x-\frac{2}{3} y+(\ln 3-2) \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.