Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.2 Calculus of Vector-Valued Functions - Exercises - Page 720: 6

Answer

$\mathop {\lim }\limits_{t \to 0} \frac{{{\bf{r}}\left( t \right)}}{t} = \left( {1,0, - 2} \right)$

Work Step by Step

We have ${\bf{r}}\left( t \right) = \left( {\sin t,1 - \cos t, - 2t} \right)$. By Theorem 1, vector-valued limits are computed component-wise, thus $\mathop {\lim }\limits_{t \to 0} \frac{{{\bf{r}}\left( t \right)}}{t} = \left( {\mathop {\lim }\limits_{t \to 0} \frac{{\sin t}}{t},\mathop {\lim }\limits_{t \to 0} \frac{{1 - \cos t}}{t},\mathop {\lim }\limits_{t \to 0} \left( { - 2} \right)} \right)$ 1. Evaluate $\mathop {\lim }\limits_{t \to 0} \frac{{\sin t}}{t}$. Using L'Hôpital's rule we get $\mathop {\lim }\limits_{t \to 0} \frac{{\sin t}}{t} = \mathop {\lim }\limits_{t \to 0} \frac{{\cos t}}{1} = 1$ 2. Evaluate $\mathop {\lim }\limits_{t \to 0} \frac{{1 - \cos t}}{t}$ Using L'Hôpital's rule we get $\mathop {\lim }\limits_{t \to 0} \frac{{1 - \cos t}}{t} = \mathop {\lim }\limits_{t \to 0} \frac{{\sin t}}{1} = 0$ 3. Evaluate $\mathop {\lim }\limits_{t \to 0} \left( { - 2} \right)$ $\mathop {\lim }\limits_{t \to 0} \left( { - 2} \right) = - 2$ So, $\mathop {\lim }\limits_{t \to 0} \frac{{{\bf{r}}\left( t \right)}}{t} = \left( {1,0, - 2} \right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.