Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.2 Calculus of Vector-Valued Functions - Exercises - Page 720: 35

Answer

$\frac{d}{{dt}}\left( {{\bf{r}} \times {\bf{r}}'} \right) = \left( {{t^2}{{\rm{e}}^t} - 2{{\rm{e}}^t}} \right){\bf{i}} - t{{\rm{e}}^t}{\bf{j}} + 2t{\bf{k}}$

Work Step by Step

We have ${\bf{r}}\left( t \right) = \left( {t,{t^2},{{\rm{e}}^t}} \right)$. So, ${\bf{r}}'\left( t \right) = \left( {1,2t,{{\rm{e}}^t}} \right)$ ${\bf{r}}{\rm{''}}\left( t \right) = \left( {0,2,{{\rm{e}}^t}} \right)$ From the result in Example 4, we obtain the formula $\frac{d}{{dt}}\left( {{\bf{r}} \times {\bf{r}}'} \right) = {\bf{r}} \times {\bf{r}}{\rm{''}}$. Thus, $\frac{d}{{dt}}\left( {{\bf{r}} \times {\bf{r}}'} \right) = \left| {\begin{array}{*{20}{c}} {\bf{i}}&{\bf{j}}&{\bf{k}}\\ t&{{t^2}}&{{{\rm{e}}^t}}\\ 0&2&{{{\rm{e}}^t}} \end{array}} \right|$ $\frac{d}{{dt}}\left( {{\bf{r}} \times {\bf{r}}'} \right) = \left| {\begin{array}{*{20}{c}} {{t^2}}&{{{\rm{e}}^t}}\\ 2&{{{\rm{e}}^t}} \end{array}} \right|{\bf{i}} - \left| {\begin{array}{*{20}{c}} t&{{{\rm{e}}^t}}\\ 0&{{{\rm{e}}^t}} \end{array}} \right|{\bf{j}} + \left| {\begin{array}{*{20}{c}} t&{{t^2}}\\ 0&2 \end{array}} \right|{\bf{k}}$ $\frac{d}{{dt}}\left( {{\bf{r}} \times {\bf{r}}'} \right) = \left( {{t^2}{{\rm{e}}^t} - 2{{\rm{e}}^t}} \right){\bf{i}} - t{{\rm{e}}^t}{\bf{j}} + 2t{\bf{k}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.