Answer
$$ a'(\theta)
=(-3\sin \theta) i+( \sin2\theta ) j+(\sec^2 \theta) k.$$
Work Step by Step
Since $ a(\theta)=(\cos3 \theta) i+(\sin^2 \theta) j+(\tan \theta) k $, then by using the chain rule, the derivative $ a'(\theta)$ is given by
$$ a'(\theta)=(-3\sin \theta) i+(2\sin \theta \cos \theta) j+(\sec^2 \theta) k\\
=(-3\sin \theta) i+( \sin2\theta ) j+(\sec^2 \theta) k.$$