Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.2 Calculus of Vector-Valued Functions - Exercises - Page 720: 19

Answer

$\frac{d}{{dt}}\left( {{{\bf{r}}_1}\left( t \right) \times {{\bf{r}}_2}\left( t \right)} \right) = \left( {3{t^2}{{\rm{e}}^t} - {{\rm{e}}^{2t}} + {t^3}{{\rm{e}}^t} - 2t{{\rm{e}}^{2t}}} \right){\bf{i}}$ ${\ \ \ \ }$ $ - \left( {2t{{\rm{e}}^t} - {{\rm{e}}^{3t}} + {t^2}{{\rm{e}}^t} - 3t{{\rm{e}}^{3t}}} \right){\bf{j}}$ ${\ \ \ \ }$ $ + \left( {2t{{\rm{e}}^{2t}} - 3{t^2}{{\rm{e}}^{3t}} + 2{t^2}{{\rm{e}}^{2t}} - 3{t^3}{{\rm{e}}^{3t}}} \right){\bf{k}}$

Work Step by Step

We have ${{\bf{r}}_1}\left( t \right) = \left( {{t^2},{t^3},t} \right)$ and ${{\bf{r}}_2}\left( t \right) = \left( {{{\rm{e}}^{3t}},{{\rm{e}}^{2t}},{{\rm{e}}^t}} \right)$. By Eq. (5) of Theorem 3, $\frac{d}{{dt}}\left( {{{\bf{r}}_1}\left( t \right) \times {{\bf{r}}_2}\left( t \right)} \right) = \left[ {{{\bf{r}}_1}'\left( t \right) \times {{\bf{r}}_2}\left( t \right)} \right] + \left[ {{{\bf{r}}_1}\left( t \right) \times {{\bf{r}}_2}'\left( t \right)} \right]$ So, (1) ${\ \ \ }$ $\frac{d}{{dt}}\left( {{{\bf{r}}_1}\left( t \right) \times {{\bf{r}}_2}\left( t \right)} \right) = \left( {2t,3{t^2},1} \right) \times \left( {{{\rm{e}}^{3t}},{{\rm{e}}^{2t}},{{\rm{e}}^t}} \right)$ ${\ \ \ \ }$ $ + \left( {{t^2},{t^3},t} \right) \times \left( {3{{\rm{e}}^{3t}},2{{\rm{e}}^{2t}},{{\rm{e}}^t}} \right)$ Evaluate the first cross product on the right-hand side of equation (1): $\left( {2t,3{t^2},1} \right) \times \left( {{{\rm{e}}^{3t}},{{\rm{e}}^{2t}},{{\rm{e}}^t}} \right)$ $\left( {2t,3{t^2},1} \right) \times \left( {{{\rm{e}}^{3t}},{{\rm{e}}^{2t}},{{\rm{e}}^t}} \right) = \left| {\begin{array}{*{20}{c}} {\bf{i}}&{\bf{j}}&{\bf{k}}\\ {2t}&{3{t^2}}&1\\ {{{\rm{e}}^{3t}}}&{{{\rm{e}}^{2t}}}&{{{\rm{e}}^t}} \end{array}} \right|$ $ = \left| {\begin{array}{*{20}{c}} {3{t^2}}&1\\ {{{\rm{e}}^{2t}}}&{{{\rm{e}}^t}} \end{array}} \right|{\bf{i}} - \left| {\begin{array}{*{20}{c}} {2t}&1\\ {{{\rm{e}}^{3t}}}&{{{\rm{e}}^t}} \end{array}} \right|{\bf{j}} + \left| {\begin{array}{*{20}{c}} {2t}&{3{t^2}}\\ {{{\rm{e}}^{3t}}}&{{{\rm{e}}^{2t}}} \end{array}} \right|{\bf{k}}$ $ = \left( {3{t^2}{{\rm{e}}^t} - {{\rm{e}}^{2t}}} \right){\bf{i}} - \left( {2t{{\rm{e}}^t} - {{\rm{e}}^{3t}}} \right){\bf{j}} + \left( {2t{{\rm{e}}^{2t}} - 3{t^2}{{\rm{e}}^{3t}}} \right){\bf{k}}$ Evaluate the second cross product on the right-hand side of equation (1): $\left( {{t^2},{t^3},t} \right) \times \left( {3{{\rm{e}}^{3t}},2{{\rm{e}}^{2t}},{{\rm{e}}^t}} \right)$ $\left( {{t^2},{t^3},t} \right) \times \left( {3{{\rm{e}}^{3t}},2{{\rm{e}}^{2t}},{{\rm{e}}^t}} \right) = \left| {\begin{array}{*{20}{c}} {\bf{i}}&{\bf{j}}&{\bf{k}}\\ {{t^2}}&{{t^3}}&t\\ {3{{\rm{e}}^{3t}}}&{2{{\rm{e}}^{2t}}}&{{{\rm{e}}^t}} \end{array}} \right|$ $ = \left| {\begin{array}{*{20}{c}} {{t^3}}&t\\ {2{{\rm{e}}^{2t}}}&{{{\rm{e}}^t}} \end{array}} \right|{\bf{i}} - \left| {\begin{array}{*{20}{c}} {{t^2}}&t\\ {3{{\rm{e}}^{3t}}}&{{{\rm{e}}^t}} \end{array}} \right|{\bf{j}} + \left| {\begin{array}{*{20}{c}} {{t^2}}&{{t^3}}\\ {3{{\rm{e}}^{3t}}}&{2{{\rm{e}}^{2t}}} \end{array}} \right|{\bf{k}}$ $ = \left( {{t^3}{{\rm{e}}^t} - 2t{{\rm{e}}^{2t}}} \right){\bf{i}} - \left( {{t^2}{{\rm{e}}^t} - 3t{{\rm{e}}^{3t}}} \right){\bf{j}} + \left( {2{t^2}{{\rm{e}}^{2t}} - 3{t^3}{{\rm{e}}^{3t}}} \right){\bf{k}}$ From the results above, it follows that $\frac{d}{{dt}}\left( {{{\bf{r}}_1}\left( t \right) \times {{\bf{r}}_2}\left( t \right)} \right) = \left( {3{t^2}{{\rm{e}}^t} - {{\rm{e}}^{2t}} + {t^3}{{\rm{e}}^t} - 2t{{\rm{e}}^{2t}}} \right){\bf{i}}$ ${\ \ \ \ }$ $ - \left( {2t{{\rm{e}}^t} - {{\rm{e}}^{3t}} + {t^2}{{\rm{e}}^t} - 3t{{\rm{e}}^{3t}}} \right){\bf{j}}$ ${\ \ \ \ }$ $ + \left( {2t{{\rm{e}}^{2t}} - 3{t^2}{{\rm{e}}^{3t}} + 2{t^2}{{\rm{e}}^{2t}} - 3{t^3}{{\rm{e}}^{3t}}} \right){\bf{k}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.