Answer
$$ b'(t)
=\langle 3e^{3t-4} ,-e^{6-t}, -(t+1)^{-2} \rangle.$$
Work Step by Step
Since $ b(t)=\langle e^{3t-4},e^{6-t}, (t+1)^{-1} \rangle $, then by using the chain rule, the derivative $ b'(t)$ is given by
$$ b'(t)= \langle e^{3t-4} (3t-4)',e^{6-t}(6-t)', -(t+1)^{-2} \rangle\\
=\langle 3e^{3t-4} ,-e^{6-t}, -(t+1)^{-2} \rangle.$$