Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.2 Calculus of Vector-Valued Functions - Exercises - Page 720: 22

Answer

(a) $\frac{d}{{dt}}\left( {{{\bf{r}}_1}\left( t \right) \times {{\bf{r}}_2}\left( t \right)} \right){|_{t = 1}} = \left( {{\rm{e}} - 4} \right){\bf{i}} - \left( {3{\rm{e}} - 2} \right){\bf{j}} + 4{\bf{k}}$ (b) $\frac{d}{{dt}}\left( {{{\bf{r}}_1}\left( t \right) \times {{\bf{r}}_2}\left( t \right)} \right){|_{t = 1}} = \left( {{\rm{e}} - 4} \right){\bf{i}} - \left( {3{\rm{e}} - 2} \right){\bf{j}} + 4{\bf{k}}$ Part (a) and part (b) give the same answer.

Work Step by Step

(a) We have ${{\bf{r}}_1}\left( t \right) = \left( {{t^2},1,2t} \right)$ and ${{\bf{r}}_2}\left( t \right) = \left( {1,2,{{\rm{e}}^t}} \right)$. ${{\bf{r}}_1}\left( t \right) \times {{\bf{r}}_2}\left( t \right) = \left| {\begin{array}{*{20}{c}} {\bf{i}}&{\bf{j}}&{\bf{k}}\\ {{t^2}}&1&{2t}\\ 1&2&{{{\rm{e}}^t}} \end{array}} \right|$ ${{\bf{r}}_1}\left( t \right) \times {{\bf{r}}_2}\left( t \right) = \left| {\begin{array}{*{20}{c}} 1&{2t}\\ 2&{{{\rm{e}}^t}} \end{array}} \right|{\bf{i}} - \left| {\begin{array}{*{20}{c}} {{t^2}}&{2t}\\ 1&{{{\rm{e}}^t}} \end{array}} \right|{\bf{j}} + \left| {\begin{array}{*{20}{c}} {{t^2}}&1\\ 1&2 \end{array}} \right|{\bf{k}}$ ${{\bf{r}}_1}\left( t \right) \times {{\bf{r}}_2}\left( t \right) = \left( {{{\rm{e}}^t} - 4t} \right){\bf{i}} - \left( {{t^2}{{\rm{e}}^t} - 2t} \right){\bf{j}} + \left( {2{t^2} - 1} \right){\bf{k}}$ $\frac{d}{{dt}}\left( {{{\bf{r}}_1}\left( t \right) \times {{\bf{r}}_2}\left( t \right)} \right) = \left( {{{\rm{e}}^t} - 4} \right){\bf{i}} - \left( {2t{{\rm{e}}^t} + {t^2}{{\rm{e}}^t} - 2} \right){\bf{j}} + 4t{\bf{k}}$ $\frac{d}{{dt}}\left( {{{\bf{r}}_1}\left( t \right) \times {{\bf{r}}_2}\left( t \right)} \right){|_{t = 1}} = \left( {{\rm{e}} - 4} \right){\bf{i}} - \left( {3{\rm{e}} - 2} \right){\bf{j}} + 4{\bf{k}}$ (b) By Eq. (5) of Theorem 3, $\frac{d}{{dt}}\left( {{{\bf{r}}_1}\left( t \right) \times {{\bf{r}}_2}\left( t \right)} \right) = \left[ {{{\bf{r}}_1}'\left( t \right) \times {{\bf{r}}_2}\left( t \right)} \right] + \left[ {{{\bf{r}}_1}\left( t \right) \times {{\bf{r}}_2}'\left( t \right)} \right]$ So, (1) ${\ \ \ }$ $\frac{d}{{dt}}\left( {{{\bf{r}}_1}\left( t \right) \times {{\bf{r}}_2}\left( t \right)} \right) = \left( {2t,0,2} \right) \times \left( {1,2,{{\rm{e}}^t}} \right)$ ${\ \ \ \ }$ $ + \left( {{t^2},1,2t} \right) \times \left( {0,0,{{\rm{e}}^t}} \right)$ Evaluate the first cross product on the right-hand side of equation (1): $\left( {2t,0,2} \right) \times \left( {1,2,{{\rm{e}}^t}} \right)$ $\left( {2t,0,2} \right) \times \left( {1,2,{{\rm{e}}^t}} \right) = \left| {\begin{array}{*{20}{c}} {\bf{i}}&{\bf{j}}&{\bf{k}}\\ {2t}&0&2\\ 1&2&{{{\rm{e}}^t}} \end{array}} \right|$ $ = \left| {\begin{array}{*{20}{c}} 0&2\\ 2&{{{\rm{e}}^t}} \end{array}} \right|{\bf{i}} - \left| {\begin{array}{*{20}{c}} {2t}&2\\ 1&{{{\rm{e}}^t}} \end{array}} \right|{\bf{j}} + \left| {\begin{array}{*{20}{c}} {2t}&0\\ 1&2 \end{array}} \right|{\bf{k}}$ $ = - 4{\bf{i}} - \left( {2t{{\rm{e}}^t} - 2} \right){\bf{j}} + 4t{\bf{k}}$ Evaluate the second cross product on the right-hand side of equation (1): $\left( {{t^2},1,2t} \right) \times \left( {0,0,{{\rm{e}}^t}} \right)$ $\left( {{t^2},1,2t} \right) \times \left( {0,0,{{\rm{e}}^t}} \right) = \left| {\begin{array}{*{20}{c}} {\bf{i}}&{\bf{j}}&{\bf{k}}\\ {{t^2}}&1&{2t}\\ 0&0&{{{\rm{e}}^t}} \end{array}} \right|$ $ = \left| {\begin{array}{*{20}{c}} 1&{2t}\\ 0&{{{\rm{e}}^t}} \end{array}} \right|{\bf{i}} - \left| {\begin{array}{*{20}{c}} {{t^2}}&{2t}\\ 0&{{{\rm{e}}^t}} \end{array}} \right|{\bf{j}} + \left| {\begin{array}{*{20}{c}} {{t^2}}&1\\ 0&0 \end{array}} \right|{\bf{k}}$ $ = {{\rm{e}}^t}{\bf{i}} - {t^2}{{\rm{e}}^t}{\bf{j}}$ From the results above, it follows that $\frac{d}{{dt}}\left( {{{\bf{r}}_1}\left( t \right) \times {{\bf{r}}_2}\left( t \right)} \right) = \left( { - 4 + {{\rm{e}}^t}} \right){\bf{i}} - \left( {2t{{\rm{e}}^t} - 2 + {t^2}{{\rm{e}}^t}} \right){\bf{j}} + 4t{\bf{k}}$ So, $\frac{d}{{dt}}\left( {{{\bf{r}}_1}\left( t \right) \times {{\bf{r}}_2}\left( t \right)} \right){|_{t = 1}} = \left( {{\rm{e}} - 4} \right){\bf{i}} - \left( {3{\rm{e}} - 2} \right){\bf{j}} + 4{\bf{k}}$ The two answers agree.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.