Answer
(a) $\frac{d}{{dt}}\left( {{{\bf{r}}_1}\left( t \right) \times {{\bf{r}}_2}\left( t \right)} \right){|_{t = 1}} = \left( {{\rm{e}} - 4} \right){\bf{i}} - \left( {3{\rm{e}} - 2} \right){\bf{j}} + 4{\bf{k}}$
(b) $\frac{d}{{dt}}\left( {{{\bf{r}}_1}\left( t \right) \times {{\bf{r}}_2}\left( t \right)} \right){|_{t = 1}} = \left( {{\rm{e}} - 4} \right){\bf{i}} - \left( {3{\rm{e}} - 2} \right){\bf{j}} + 4{\bf{k}}$
Part (a) and part (b) give the same answer.
Work Step by Step
(a) We have ${{\bf{r}}_1}\left( t \right) = \left( {{t^2},1,2t} \right)$ and ${{\bf{r}}_2}\left( t \right) = \left( {1,2,{{\rm{e}}^t}} \right)$.
${{\bf{r}}_1}\left( t \right) \times {{\bf{r}}_2}\left( t \right) = \left| {\begin{array}{*{20}{c}}
{\bf{i}}&{\bf{j}}&{\bf{k}}\\
{{t^2}}&1&{2t}\\
1&2&{{{\rm{e}}^t}}
\end{array}} \right|$
${{\bf{r}}_1}\left( t \right) \times {{\bf{r}}_2}\left( t \right) = \left| {\begin{array}{*{20}{c}}
1&{2t}\\
2&{{{\rm{e}}^t}}
\end{array}} \right|{\bf{i}} - \left| {\begin{array}{*{20}{c}}
{{t^2}}&{2t}\\
1&{{{\rm{e}}^t}}
\end{array}} \right|{\bf{j}} + \left| {\begin{array}{*{20}{c}}
{{t^2}}&1\\
1&2
\end{array}} \right|{\bf{k}}$
${{\bf{r}}_1}\left( t \right) \times {{\bf{r}}_2}\left( t \right) = \left( {{{\rm{e}}^t} - 4t} \right){\bf{i}} - \left( {{t^2}{{\rm{e}}^t} - 2t} \right){\bf{j}} + \left( {2{t^2} - 1} \right){\bf{k}}$
$\frac{d}{{dt}}\left( {{{\bf{r}}_1}\left( t \right) \times {{\bf{r}}_2}\left( t \right)} \right) = \left( {{{\rm{e}}^t} - 4} \right){\bf{i}} - \left( {2t{{\rm{e}}^t} + {t^2}{{\rm{e}}^t} - 2} \right){\bf{j}} + 4t{\bf{k}}$
$\frac{d}{{dt}}\left( {{{\bf{r}}_1}\left( t \right) \times {{\bf{r}}_2}\left( t \right)} \right){|_{t = 1}} = \left( {{\rm{e}} - 4} \right){\bf{i}} - \left( {3{\rm{e}} - 2} \right){\bf{j}} + 4{\bf{k}}$
(b) By Eq. (5) of Theorem 3,
$\frac{d}{{dt}}\left( {{{\bf{r}}_1}\left( t \right) \times {{\bf{r}}_2}\left( t \right)} \right) = \left[ {{{\bf{r}}_1}'\left( t \right) \times {{\bf{r}}_2}\left( t \right)} \right] + \left[ {{{\bf{r}}_1}\left( t \right) \times {{\bf{r}}_2}'\left( t \right)} \right]$
So,
(1) ${\ \ \ }$ $\frac{d}{{dt}}\left( {{{\bf{r}}_1}\left( t \right) \times {{\bf{r}}_2}\left( t \right)} \right) = \left( {2t,0,2} \right) \times \left( {1,2,{{\rm{e}}^t}} \right)$
${\ \ \ \ }$ $ + \left( {{t^2},1,2t} \right) \times \left( {0,0,{{\rm{e}}^t}} \right)$
Evaluate the first cross product on the right-hand side of equation (1):
$\left( {2t,0,2} \right) \times \left( {1,2,{{\rm{e}}^t}} \right)$
$\left( {2t,0,2} \right) \times \left( {1,2,{{\rm{e}}^t}} \right) = \left| {\begin{array}{*{20}{c}}
{\bf{i}}&{\bf{j}}&{\bf{k}}\\
{2t}&0&2\\
1&2&{{{\rm{e}}^t}}
\end{array}} \right|$
$ = \left| {\begin{array}{*{20}{c}}
0&2\\
2&{{{\rm{e}}^t}}
\end{array}} \right|{\bf{i}} - \left| {\begin{array}{*{20}{c}}
{2t}&2\\
1&{{{\rm{e}}^t}}
\end{array}} \right|{\bf{j}} + \left| {\begin{array}{*{20}{c}}
{2t}&0\\
1&2
\end{array}} \right|{\bf{k}}$
$ = - 4{\bf{i}} - \left( {2t{{\rm{e}}^t} - 2} \right){\bf{j}} + 4t{\bf{k}}$
Evaluate the second cross product on the right-hand side of equation (1):
$\left( {{t^2},1,2t} \right) \times \left( {0,0,{{\rm{e}}^t}} \right)$
$\left( {{t^2},1,2t} \right) \times \left( {0,0,{{\rm{e}}^t}} \right) = \left| {\begin{array}{*{20}{c}}
{\bf{i}}&{\bf{j}}&{\bf{k}}\\
{{t^2}}&1&{2t}\\
0&0&{{{\rm{e}}^t}}
\end{array}} \right|$
$ = \left| {\begin{array}{*{20}{c}}
1&{2t}\\
0&{{{\rm{e}}^t}}
\end{array}} \right|{\bf{i}} - \left| {\begin{array}{*{20}{c}}
{{t^2}}&{2t}\\
0&{{{\rm{e}}^t}}
\end{array}} \right|{\bf{j}} + \left| {\begin{array}{*{20}{c}}
{{t^2}}&1\\
0&0
\end{array}} \right|{\bf{k}}$
$ = {{\rm{e}}^t}{\bf{i}} - {t^2}{{\rm{e}}^t}{\bf{j}}$
From the results above, it follows that
$\frac{d}{{dt}}\left( {{{\bf{r}}_1}\left( t \right) \times {{\bf{r}}_2}\left( t \right)} \right) = \left( { - 4 + {{\rm{e}}^t}} \right){\bf{i}} - \left( {2t{{\rm{e}}^t} - 2 + {t^2}{{\rm{e}}^t}} \right){\bf{j}} + 4t{\bf{k}}$
So,
$\frac{d}{{dt}}\left( {{{\bf{r}}_1}\left( t \right) \times {{\bf{r}}_2}\left( t \right)} \right){|_{t = 1}} = \left( {{\rm{e}} - 4} \right){\bf{i}} - \left( {3{\rm{e}} - 2} \right){\bf{j}} + 4{\bf{k}}$
The two answers agree.