Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 13 - Vector Geometry - Chapter Review Exercises - Page 702: 43

Answer

We have the solution $a = - 1$. Since the solution is unique, we conclude that the equation $\left( {1,2,3} \right) \times {\bf{v}} = \left( { - 1,2,a} \right)$ has no solution for $a \ne - 1$.

Work Step by Step

Let the components of ${\bf{v}}$ be ${\bf{v}} = \left( {{v_1},{v_2},{v_3}} \right)$. So, $\left( {1,2,3} \right) \times {\bf{v}} = \left| {\begin{array}{*{20}{c}} {\bf{i}}&{\bf{j}}&{\bf{k}}\\ 1&2&3\\ {{v_1}}&{{v_2}}&{{v_3}} \end{array}} \right|$ $\left( {1,2,3} \right) \times {\bf{v}} = \left| {\begin{array}{*{20}{c}} 2&3\\ {{v_2}}&{{v_3}} \end{array}} \right|{\bf{i}} - \left| {\begin{array}{*{20}{c}} 1&3\\ {{v_1}}&{{v_3}} \end{array}} \right|{\bf{j}} + \left| {\begin{array}{*{20}{c}} 1&2\\ {{v_1}}&{{v_2}} \end{array}} \right|{\bf{k}}$ $\left( {1,2,3} \right) \times {\bf{v}} = \left( {2{v_3} - 3{v_2}} \right){\bf{i}} - \left( {{v_3} - 3{v_1}} \right){\bf{j}} + \left( {{v_2} - 2{v_1}} \right){\bf{k}}$ Since $\left( {1,2,3} \right) \times {\bf{v}} = \left( { - 1,2,a} \right)$, so $\left( {2{v_3} - 3{v_2}} \right){\bf{i}} - \left( {{v_3} - 3{v_1}} \right){\bf{j}} + \left( {{v_2} - 2{v_1}} \right){\bf{k}} = \left( { - 1,2,a} \right)$ We obtain a system of equations $2{v_3} - 3{v_2} = - 1$ $ - {v_3} + 3{v_1} = 2$ ${v_2} - 2{v_1} = a$ From the third equation we obtain ${v_1} = \frac{1}{2}\left( {{v_2} - a} \right)$. Substituting it in the second equation gives $ - {v_3} + \frac{3}{2}\left( {{v_2} - a} \right) = 2$ $ - {v_3} + \frac{3}{2}{v_2} = 2 + \frac{3}{2}a$ Now, we solve two equations in terms of ${v_2}$ and ${v_3}$: $2{v_3} - 3{v_2} = - 1$ $ - {v_3} + \frac{3}{2}{v_2} = 2 + \frac{3}{2}a$ We have from the second equation ${v_3} = \frac{3}{2}{v_2} - 2 - \frac{3}{2}a$. Substituting it in the first equations gives $2\left( {\frac{3}{2}{v_2} - 2 - \frac{3}{2}a} \right) - 3{v_2} = - 1$ $3{v_2} - 4 - 3a - 3{v_2} = - 1$ $3a = - 3$, ${\ \ \ }$ $a = - 1$ We have $a = - 1$. Since the solution is unique, we conclude that the equation $\left( {1,2,3} \right) \times {\bf{v}} = \left( { - 1,2,a} \right)$ has no solution for $a \ne - 1$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.