Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 13 - Vector Geometry - Chapter Review Exercises - Page 702: 40

Answer

The angle between ${\bf{v}}$ and ${\bf{w}}$: $\theta = \frac{{2\pi }}{3}$

Work Step by Step

Since $||{\bf{v}} + {\bf{w}}|{|^2} = \left( {{\bf{v}} + {\bf{w}}} \right)\cdot\left( {{\bf{v}} + {\bf{w}}} \right)$, so $||{\bf{v}} + {\bf{w}}|{|^2} = {\bf{v}}\cdot{\bf{v}} + {\bf{w}}\cdot{\bf{v}} + {\bf{v}}\cdot{\bf{w}} + {\bf{w}}\cdot{\bf{w}}$ (1) ${\ \ }$ $||{\bf{v}} + {\bf{w}}|{|^2} = ||{\bf{v}}|{|^2} + 2{\bf{v}}\cdot{\bf{w}} + ||{\bf{w}}|{|^2}$ If $||{\bf{v}} + {\bf{w}}|| = ||{\bf{v}}|| = ||{\bf{w}}||$, then $||{\bf{v}} + {\bf{w}}|{|^2} = ||{\bf{v}}|{|^2} = ||{\bf{w}}|{|^2}$. Write $||{\bf{v}} + {\bf{w}}|{|^2} = ||{\bf{v}}|{|^2} = ||{\bf{w}}|{|^2} = a$. Thus, equation (1) becomes $||{\bf{v}} + {\bf{w}}|{|^2} = ||{\bf{v}}|{|^2} + 2{\bf{v}}\cdot{\bf{w}} + ||{\bf{w}}|{|^2}$ $a = a + 2{\bf{v}}\cdot{\bf{w}} + a$ $2{\bf{v}}\cdot{\bf{w}} = - a$ ${\bf{v}}\cdot{\bf{w}} = - \frac{a}{2}$ By Theorem 2 of Section 13.3: ${\bf{v}}\cdot{\bf{w}} = ||{\bf{v}}||||{\bf{w}}||\cos \theta $, where $\theta$ is the angle between the vectors ${\bf{v}}$ and ${\bf{w}}$. So, $ - \frac{a}{2} = \sqrt a \sqrt a \cos \theta $, ${\ \ }$ $\cos \theta = - \frac{1}{2}$ For $0 \le \theta \le \pi $, we obtain $\theta = \frac{{2\pi }}{3}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.