Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 13 - Vector Geometry - Chapter Review Exercises - Page 702: 37

Answer

$5\sqrt 2$

Work Step by Step

Let the vector connecting the points (1,3,-1) and (2,-1,3) be $\textbf{v}$ and the vector connecting points (2,-1,3) and (4,1,1) be $\textbf{w}$. Then, $\textbf{v}=(2-1)\textbf{i}+(-1-3)\textbf{j}+(3-(-1))\textbf{k}=\textbf{i}-4\textbf{j}+4\textbf{k}$ $\textbf{w}=(4-2)\textbf{i}+(1-(-1))\textbf{j}+(1-3)\textbf{k}= 2\textbf{i}+2\textbf{j}-2\textbf{k}$ The area of the triangle is given by: $\frac{||\textbf{v}\times\textbf{w}||}{2}$ $\textbf{v}\times\textbf{w}=\begin{vmatrix}\textbf{i}&\textbf{j}&\textbf{k}\\1&-4&4\\2&2&-2\end{vmatrix}$ $=\textbf{i}(-4\times-2-2\times4)-\textbf{j}(1\times-2-4\times2)+\textbf{k}(1\times2-(-4\times2))=10\textbf{j}+10\textbf{k}$ $||\textbf{v}\times\textbf{w}||=\sqrt {10^{2}+10^{2}}=\sqrt {200}=2\sqrt {50}$ Area= $\frac{||\textbf{v}\times\textbf{w}||}{2}=\sqrt {50}=5\sqrt 2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.