Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 13 - Vector Geometry - Chapter Review Exercises - Page 702: 41

Answer

$||{\bf{e}} - 4{\bf{f}}|| = \sqrt {13} $

Work Step by Step

We have $||{\bf{e}} + {\bf{f}}|| = \sqrt 3 $. Since $||{\bf{e}} + {\bf{f}}|{|^2} = \left( {{\bf{e}} + {\bf{f}}} \right)\cdot\left( {{\bf{e}} + {\bf{f}}} \right)$, so $||{\bf{e}} + {\bf{f}}|{|^2} = {\bf{e}}\cdot{\bf{e}} + {\bf{f}}\cdot{\bf{e}} + {\bf{e}}\cdot{\bf{f}} + {\bf{f}}\cdot{\bf{f}}$ $||{\bf{e}} + {\bf{f}}|{|^2} = ||{\bf{e}}|{|^2} + 2{\bf{e}}\cdot{\bf{f}} + ||{\bf{f}}|{|^2}$ Since ${\bf{e}}$ and ${\bf{f}}$ are unit vectors, it follows that $3 = 1 + 2{\bf{e}}\cdot{\bf{f}} + 1$ ${\bf{e}}\cdot{\bf{f}} = \frac{1}{2}$ Evaluate $||{\bf{e}} - 4{\bf{f}}|{|^2}$. $||{\bf{e}} - 4{\bf{f}}|{|^2} = \left( {{\bf{e}} - 4{\bf{f}}} \right)\cdot\left( {{\bf{e}} - 4{\bf{f}}} \right)$ $||{\bf{e}} - 4{\bf{f}}|{|^2} = {\bf{e}}\cdot{\bf{e}} - 4{\bf{f}}\cdot{\bf{e}} - 4{\bf{e}}\cdot{\bf{f}} + 16{\bf{f}}\cdot{\bf{f}}$ $||{\bf{e}} - 4{\bf{f}}|{|^2} = ||{\bf{e}}|{|^2} - 8{\bf{e}}\cdot{\bf{f}} + 16||{\bf{f}}|{|^2}$ Since ${\bf{e}}$ and ${\bf{f}}$ are unit vectors and from previous result ${\bf{e}}\cdot{\bf{f}} = \frac{1}{2}$, so $||{\bf{e}} - 4{\bf{f}}|{|^2} = 1 - 8\cdot\frac{1}{2} + 16 = 13$ $||{\bf{e}} - 4{\bf{f}}|| = \sqrt {13} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.