Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 13 - Vector Geometry - Chapter Review Exercises - Page 702: 27

Answer

The line connecting the midpoints of two sides of a triangle is parallel to the third side.

Work Step by Step

Let $A$, $B$ and $C$ be the vertices of the triangle $\vartriangle ABC$. Suppose the components of the points are given by $A = \left( {{a_1},{a_2},{a_3}} \right)$, $B = \left( {{b_1},{b_2},{b_3}} \right)$ and $C = \left( {{c_1},{c_2},{c_3}} \right)$. Let $P$ and $Q$ denote the midpoints of the line segments $\overline {AB} $ and $\overline {BC} $, respectively. So, $P = \left( {\frac{{{a_1} + {b_1}}}{2},\frac{{{a_2} + {b_2}}}{2},\frac{{{a_3} + {b_3}}}{2}} \right)$ and $Q = \left( {\frac{{{b_1} + {c_1}}}{2},\frac{{{b_2} + {c_2}}}{2},\frac{{{b_3} + {c_3}}}{2}} \right)$ Thus, the vector $\overrightarrow {PQ} $ is $\overrightarrow {PQ} = Q - P$ $\overrightarrow {PQ} = \left( {\frac{{{b_1} + {c_1}}}{2},\frac{{{b_2} + {c_2}}}{2},\frac{{{b_3} + {c_3}}}{2}} \right) - \left( {\frac{{{a_1} + {b_1}}}{2},\frac{{{a_2} + {b_2}}}{2},\frac{{{a_3} + {b_3}}}{2}} \right)$ $\overrightarrow {PQ} = \left( {\frac{{{c_1} - {a_1}}}{2},\frac{{{c_2} - {a_2}}}{2},\frac{{{c_3} - {a_3}}}{2}} \right)$ $\overrightarrow {PQ} = \frac{1}{2}\left( {{c_1} - {a_1},{c_2} - {a_2},{c_3} - {a_3}} \right)$ Next, we find the vector $\overrightarrow {AC} $. $\overrightarrow {AC} = C - A = \left( {{c_1},{c_2},{c_3}} \right) - \left( {{a_1},{a_2},{a_3}} \right)$ $\overrightarrow {AC} = \left( {{c_1} - {a_1},{c_2} - {a_2},{c_3} - {a_3}} \right)$ Comparing $\overrightarrow {PQ} $ and $\overrightarrow {AC} $, we see that $\overrightarrow {PQ} = \frac{1}{2}\overrightarrow {AC} $. Because $\overrightarrow {PQ} $ is a constant multiple of $\overrightarrow {AC} $, $\overrightarrow {PQ} $ is parallel to $\overrightarrow {AC} $. Since $A$, $B$ and $C$ are arbitrary vertices of any triangle $\vartriangle ABC$, we conclude that the line connecting the midpoints of two sides of a triangle is parallel to the third side.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.