Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 7 - Applications of Integration - 7.4 Exercises - Page 473: 9

Answer

$309.3195$

Work Step by Step

The formula for the arc length is $s=\int_{a}^b \sqrt{1 + (y')^2} dy$ Differentiate $y = \frac{x^5}{10}+\frac{1}{6x^3}$ with respect to x. $y' = \frac{x^4}{2}- \frac{1}{2x^4}$ $=\frac{1}{2}(x^4 - x^{−4})$ Substitute the value of y' in $1 + (y')^2$ $1+(y')^2=1+[\frac{1}{2}(x^4 - x^{−4})]^2$ $=[\frac{1}{2}(x^4 + x^{−4})]^2$ Substitute the value of $1 + (y')^2$ in the formula for the arc length $s=\int_{a}^b \sqrt{1 + (y')^2} dy$ Solve for the distance s $s=\int_{2}^5\sqrt{\frac{1}{2}(x^4 + x^{-4})}^{2} dx$ $=\frac{1}{2}\int_{2}^5 (x^4 + x^{-4})dx$ $=\frac{1}{2}[\frac{x^5}{5}-\frac{1}{3x^3}]_2^5\ $ $=309.3195$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.