Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 7 - Applications of Integration - 7.4 Exercises - Page 473: 23

Answer

$$s = \int_{{e^{ - 2}}}^1 {\sqrt {1 + \frac{1}{{{x^2}}}} } dx \approx 2.221418$$

Work Step by Step

$$\eqalign{ & x = {e^{ - y}},{\text{ }}0 \leqslant y \leqslant 2 \cr & {\text{Solve for }}y \cr & \ln x = - y \cr & y = - \ln x \cr & 0 \leqslant y \leqslant 2 \to {e^{ - 2}} \leqslant x \leqslant 1 \cr & \cr & \left( {\text{a}} \right){\text{Graph below}} \cr & \cr & {\text{Use the formula for arc length}} \cr & s = \int_a^b {\sqrt {1 + {{\left( {\frac{{dy}}{{dx}}} \right)}^2}} } dx \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ { - \ln x} \right] \cr & \frac{{dy}}{{dx}} = - \frac{1}{x} \cr & s = \int_{{e^{ - 1}}}^1 {\sqrt {1 + {{\left( { - \frac{1}{x}} \right)}^2}} } dx \cr & s = \int_{{e^{ - 2}}}^1 {\sqrt {1 + \frac{1}{{{x^2}}}} } dx \cr & \cr & \left( {\text{c}} \right){\text{Integrate by using a CAS or graphing utility}} \cr & s = \int_{{e^{ - 2}}}^1 {\sqrt {1 + \frac{1}{{{x^2}}}} } dx \approx 2.221418 \cr & \cr & {\text{Graph}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.