Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 7 - Applications of Integration - 7.4 Exercises - Page 473: 8

Answer

$\frac{92}{9}$

Work Step by Step

The formula for the arc length is $s=\int_{a}^b \sqrt{1 + (y')^2} dy$ Differentiate $y = \frac{x^4}{8}+\frac{1}{4x^2}$ with respect to x. $y' = \frac{4x^3}{8}- \frac{2}{4x^3}$ $=\frac{1}{2}(x^3 - x^{−3})$ Substitute the value of y' in $1 + (y')^2$ $1+(y')^2=1+[\frac{1}{2}(x^3 - x^{−3})]^2$ $=[\frac{1}{2}(x^3 + x^{−3})]^2$ Substitute the value of $1 + (y')^2$ in the formula for the arc length $s=\int_{a}^b \sqrt{1 + (y')^2} dy$ Solve for the distance s $s=\int_{1}^3\sqrt{\frac{1}{2}(x^3 + x^{-3})}^{2} dx$ $=\frac{1}{2}\int_{1}^3 (x^3 + x^{-3})dx$ $=\frac{1}{2}[\frac{x^4}{4}-\frac{1}{2x^2}]_1^3\ $ $=\frac{92}{9}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.