Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 7 - Applications of Integration - 7.4 Exercises - Page 473: 13

Answer

$\approx3.627$

Work Step by Step

The formula for the arc length is $s=\int_{a}^b \sqrt{1 + (y')^2} dy$ Differentiate $y = \frac{1}{2}(e^x + e^{−x})$ with respect to x. $y' = \frac{1}{2}(e^x - e^{−x})$ Substitute the value of y' in $1 + (y')^2$ $1+(y')^2=1+[\frac{1}{2}(e^x - e^{−x})]^2$ $=\frac{1}{4}(e^x + e^{−x})^2$ Substitute the value of $1 + (y')^2$ in the formula for the arc length $s=\int_{a}^b \sqrt{1 + (y')^2} dy$ Solve for the distance s $s=\int_{0}^2\sqrt{\frac{1}{4}(e^x - e^{-x})}^{2} dx$ $=\int_{0}^2 \frac{1}{2}(e^x - e^{-x})dx$ $=\frac{1}{2}[e^x - e^{-x}]_0^2\ $ $= \frac{1}{2}(e^2 - e^{-2})$ $\approx3.627$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.