Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 7 - Applications of Integration - 7.4 Exercises - Page 473: 26

Answer

$$s = \pi $$

Work Step by Step

$$\eqalign{ & x = \sqrt {36 - {y^2}} ,{\text{ }}0 \leqslant y \leqslant 3 \cr & \cr & \left( {\text{a}} \right){\text{Graph below}} \cr & \cr & {\text{Use the formula for arc length}} \cr & s = \int_c^d {\sqrt {1 + {{\left( {\frac{{dx}}{{dy}}} \right)}^2}} } dy \cr & \frac{{dx}}{{dy}} = \frac{d}{{dy}}\left[ {\sqrt {36 - {y^2}} } \right] \cr & \frac{{dx}}{{dy}} = \frac{{ - 2y}}{{2\sqrt {36 - {y^2}} }} \cr & \frac{{dx}}{{dy}} = - \frac{y}{{\sqrt {36 - {y^2}} }} \cr & s = \int_0^3 {\sqrt {1 + {{\left( { - \frac{y}{{\sqrt {36 - {y^2}} }}} \right)}^2}} } dy \cr & s = \int_0^3 {\sqrt {1 + \frac{{{y^2}}}{{36 - {y^2}}}} } dy \cr & s = \int_0^3 {\sqrt {\frac{{36 - {y^2} + {y^2}}}{{36 - {y^2}}}} } dy \cr & s = \int_0^3 {\sqrt {\frac{{36}}{{36 - {y^2}}}} } dy \cr & s = 6\int_0^3 {\frac{1}{{\sqrt {36 - {y^2}} }}} dy \cr & \cr & \left( {\text{c}} \right){\text{Integrate }} \cr & s = 6\left[ {{{\sin }^{ - 1}}\left( {\frac{y}{6}} \right)} \right]_0^3 \cr & s = 6\left[ {{{\sin }^{ - 1}}\left( {\frac{3}{6}} \right) - {{\sin }^{ - 1}}\left( 0 \right)} \right] \cr & s = 6\left[ {\frac{\pi }{6} - 0} \right] \cr & s = \pi \cr & \cr & {\text{Graph}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.