Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 7 - Applications of Integration - 7.4 Exercises - Page 473: 15

Answer

$$s = \frac{{76}}{3}$$

Work Step by Step

$$\eqalign{ & x = \frac{1}{3}{\left( {{y^2} + 2} \right)^{3/2}},{\text{ }}0 \leqslant y \leqslant 4 \cr & {\text{Differentiate}} \cr & \frac{{dx}}{{dy}} = \frac{d}{{dy}}\left[ {\frac{1}{3}{{\left( {{y^2} + 2} \right)}^{3/2}}} \right] \cr & \frac{{dx}}{{dy}} = \frac{1}{3}\left( {\frac{3}{2}} \right){\left( {{y^2} + 2} \right)^{1/2}}\left( {2y} \right) \cr & \frac{{dx}}{{dy}} = y\sqrt {{y^2} + 2} \cr & {\text{Use the formula for arc length}} \cr & s = \int_c^d {\sqrt {1 + {{\left( {\frac{{dx}}{{dy}}} \right)}^2}} } dy \cr & s = \int_0^4 {\sqrt {1 + {{\left( {y\sqrt {{y^2} + 2} } \right)}^2}} } dy \cr & s = \int_0^4 {\sqrt {1 + {y^2}\left( {{y^2} + 2} \right)} } dy \cr & s = \int_0^4 {\sqrt {1 + {y^4} + 2{y^2}} } dy \cr & s = \int_0^4 {\sqrt {{{\left( {{y^2} + 1} \right)}^2}} } dy \cr & s = \int_0^4 {\left( {{y^2} + 1} \right)} dy \cr & {\text{Integrate}} \cr & s = \left[ {\frac{1}{3}{y^3} + y} \right]_0^4 \cr & s = \left[ {\frac{1}{3}{{\left( 4 \right)}^3} + \left( 4 \right)} \right] - \left[ {\frac{1}{3}{{\left( 0 \right)}^3} + \left( 0 \right)} \right] \cr & s = \frac{{76}}{3} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.