Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - Review Exercises - Page 239: 66

Answer

$$\eqalign{ & {\text{No vertical asymptotes}} \cr & {\text{Horizontal asymptotes: }}y = - 3{\text{ and }}y = 3 \cr} $$

Work Step by Step

$$\eqalign{ & f\left( x \right) = \frac{{3x}}{{\sqrt {{x^2} + 2} }} \cr & {\text{The function is continuous for all real number }}x \cr & {\text{there are no vertical asymptotes}}{\text{.}} \cr & {\text{Calculate the horizontal asymptotes}}{\text{, Evaluating }} \cr & \mathop {\lim }\limits_{x \to - \infty } f\left( x \right){\text{ and }}\mathop {\lim }\limits_{x \to \infty } f\left( x \right) \cr & {\text{For }}x < 0,{\text{ we can write }}x = - \sqrt {{x^2}} ,{\text{ then dividing the}} \cr & {\text{ numerator and denominator by }}x{\text{ produces}} \cr & *\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{{3x}}{{\sqrt {{x^2} + 2} }} = \frac{{\mathop {\lim }\limits_{x \to - \infty } \left( {\frac{{3x}}{x}} \right)}}{{\mathop {\lim }\limits_{x \to - \infty } \left( {\frac{{\sqrt {{x^2} + 2} }}{{ - \sqrt {{x^2}} }}} \right)}} \cr & = \frac{{\mathop {\lim }\limits_{x \to \infty } \left( 3 \right)}}{{ - \mathop {\lim }\limits_{x \to \infty } \left( {\sqrt {1 + \frac{2}{{{x^2}}}} } \right)}} = \frac{3}{{ - \sqrt {1 + 0} }} = - 3 \cr & {\text{For }}x > 0,{\text{ we can write }}x = \sqrt {{x^2}} ,{\text{ then dividing the }} \cr & {\text{numerator and denominator by }}x{\text{ produces}} \cr & *\mathop {\lim }\limits_{x \to \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to \infty } \frac{{\frac{{3x}}{x}}}{{\frac{{\sqrt {{x^2} + 2} }}{{\sqrt {{x^2}} }}}} = \frac{{\mathop {\lim }\limits_{x \to \infty } \left( {\frac{{3x}}{x}} \right)}}{{\mathop {\lim }\limits_{x \to \infty } \left( {\sqrt {\frac{{{x^2}}}{{{x^2}}} + \frac{2}{{{x^2}}}} } \right)}} \cr & = \frac{{\mathop {\lim }\limits_{x \to \infty } \left( 3 \right)}}{{\mathop {\lim }\limits_{x \to \infty } \left( {\sqrt {1 + \frac{2}{{{x^2}}}} } \right)}} = \frac{3}{{\sqrt {1 + 0} }} = 3 \cr & \cr & {\text{Therefore}}{\text{, }} \cr & {\text{No vertical asymptotes}} \cr & {\text{Horizontal asymptotes: }}y = - 3{\text{ and }}y = 3 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.