Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - Review Exercises - Page 239: 46

Answer

$$\eqalign{ & {\text{Relative minumum at: }}\left( {\frac{{11\pi }}{6},\frac{{11\pi }}{6} - \sqrt 3 } \right),\left( {\frac{{23\pi }}{6},\frac{{23\pi }}{6} - \sqrt 3 } \right) \cr & {\text{Relative maximum at: }}\left( {\frac{{7\pi }}{6},\frac{{7\pi }}{6} + \sqrt 3 } \right),\left( {\frac{{19\pi }}{6},\frac{{19\pi }}{6} + \sqrt 3 } \right) \cr} $$

Work Step by Step

$$\eqalign{ & h\left( x \right) = x - 2\cos x,{\text{ }}\left[ {0,4\pi } \right] \cr & {\text{Domain: }}\left[ {0,4\pi } \right] \cr & {\text{*Calculate the first derivative}} \cr & h'\left( x \right) = \frac{d}{{dx}}\left[ {x - 2\cos x} \right] \cr & h'\left( x \right) = 1 + 2\sin x \cr & {\text{Set }}h'\left( x \right) = 0 \cr & 1 + 2\sin x = 0 \cr & \sin x = - \frac{1}{2} \cr & {\text{For the interval }}\left[ {0,4\pi } \right]{\text{ }}\sin x = - \frac{1}{2}{\text{ when:}} \cr & x = \frac{{7\pi }}{6},\frac{{11\pi }}{6},\frac{{19\pi }}{6},\frac{{23\pi }}{6} \cr & *{\text{Calculate the second derivative}} \cr & h''\left( x \right) = \frac{d}{{dx}}\left[ {1 + 2\sin x} \right] \cr & h''\left( x \right) = 2\cos x \cr & {\text{Evaluate the second derivative at the critical values}} \cr & *h''\left( {\frac{{7\pi }}{6}} \right) = 2\cos \left( {\frac{{7\pi }}{6}} \right) = - \sqrt 3 < 0,{\text{ }} \cr & {\text{Relative maximum at }}\left( {\frac{{7\pi }}{6},f\left( {\frac{{7\pi }}{6}} \right)} \right) = \left( {\frac{{7\pi }}{6},\frac{{7\pi }}{6} + \sqrt 3 } \right) \cr & *h''\left( {\frac{{11\pi }}{6}} \right) = 2\cos \left( {\frac{{11\pi }}{6}} \right) = \sqrt 3 > 0,{\text{ }} \cr & {\text{Relative minimum at }}\left( {\frac{{11\pi }}{6},f\left( {\frac{{11\pi }}{6}} \right)} \right) = \left( {\frac{{11\pi }}{6},\frac{{11\pi }}{6} - \sqrt 3 } \right) \cr & *h''\left( {\frac{{19\pi }}{6}} \right) = 2\cos \left( {\frac{{19\pi }}{6}} \right) = - \sqrt 3 < 0,{\text{ }} \cr & {\text{Relative maximum at }}\left( {\frac{{19\pi }}{6},f\left( {\frac{{19\pi }}{6}} \right)} \right) = \left( {\frac{{19\pi }}{6},\frac{{19\pi }}{6} + \sqrt 3 } \right) \cr & *h''\left( {\frac{{23\pi }}{6}} \right) = 2\cos \left( {\frac{{23\pi }}{6}} \right) = \sqrt 3 > 0,{\text{ }} \cr & {\text{Relative minimum at }}\left( {\frac{{23\pi }}{6},f\left( {\frac{{23\pi }}{6}} \right)} \right) = \left( {\frac{{23\pi }}{6},\frac{{23\pi }}{6} - \sqrt 3 } \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.