Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - Review Exercises - Page 239: 54

Answer

$$ - 4$$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{x \to - \infty } \frac{{1 - 4x}}{{x + 1}} \cr & = \frac{{1 - 4\left( \infty \right)}}{{\left( \infty \right) + 1}} = \frac{\infty }{\infty } \cr & {\text{Divide the numerator and denominator by }}x \cr & \mathop {\lim }\limits_{x \to - \infty } \frac{{\frac{1}{x} - \frac{{4x}}{x}}}{{\frac{x}{x} + \frac{1}{x}}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{\frac{1}{x} - 4}}{{1 + \frac{1}{x}}} \cr & {\text{By properties of limits}} \cr & = \frac{{\mathop {\lim }\limits_{x \to - \infty } \left( {\frac{1}{x}} \right) - \mathop {\lim }\limits_{x \to - \infty } \left( 4 \right)}}{{\mathop {\lim }\limits_{x \to - \infty } \left( 1 \right) + \mathop {\lim }\limits_{x \to - \infty } \left( {\frac{1}{x}} \right)}} \cr & {\text{Evaluating}} \cr & = \frac{{\frac{1}{{ - \infty }} - 4}}{{1 + \frac{1}{{ - \infty }}}} = \frac{{0 - 4}}{{1 - 0}} \cr & = - 4 \cr & {\text{Therefore,}} \cr & \mathop {\lim }\limits_{x \to - \infty } \frac{{1 - 4x}}{{x + 1}} = - 4 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.