Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - Review Exercises - Page 239: 58

Answer

$\displaystyle \frac{1}{2}$

Work Step by Step

We divide both the numerator and denominator with $\sqrt{x^{2}} =|x|,$ which, when x is negative, equals $-x.$ $\displaystyle \lim_{x\rightarrow-\infty}\frac{\sqrt{x^{2}+x}}{-2x}=\lim_{x\rightarrow-\infty}\frac{\sqrt{\dfrac{x^{2}+x}{x^{2}}}}{\dfrac{-2x}{-x}}$ $=\displaystyle \lim_{x\rightarrow-\infty}\frac{\sqrt{1+\frac{1}{x}}}{2}\qquad $... the term $\displaystyle \frac{1}{x}$ approaches 0 when $ x\rightarrow-\infty$ $=\displaystyle \frac{1}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.