Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - Review Exercises - Page 239: 61

Answer

$6$

Work Step by Step

Divide both the numerator and denominator with x $...=\displaystyle \lim_{x\rightarrow-\infty}\frac{6}{1+\dfrac{\cos x}{x}}=\frac{6}{1+\displaystyle\lim_{x\rightarrow-\infty}\frac{\cos x}{x}}=...$ Knowing that $1\geq\cos x\geq-1,$ we divide with a NEGATIVE NUMBER x, $\displaystyle \frac{1}{x}\leq\frac{\cos x}{x}\leq-\frac{1}{x}.$ Since $\displaystyle \lim_{x\rightarrow-\infty}\frac{1}{x}=\lim_{x\rightarrow-\infty}\frac{-1}{x}=0 ,$ by the Squeeze thorem (Theorem 1.8), $0\displaystyle \leq\lim_{x\rightarrow-\infty}\frac{\cos x}{x}\leq 0,$ meaning that $\displaystyle \lim_{x\rightarrow-\infty}\frac{\cos x}{x}=0.$ So ... $\displaystyle \frac{6}{1+\displaystyle\lim_{x\rightarrow-\infty}\frac{\cos x}{x}}=\frac{6}{1+0}=6$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.