Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - Review Exercises - Page 239: 65

Answer

$$\eqalign{ & {\text{Vertical asymptote: }}x = 4 \cr & {\text{Horizontal asymptote: }}y = 2 \cr} $$

Work Step by Step

$$\eqalign{ & h\left( x \right) = \frac{{2x + 3}}{{x - 4}} \cr & {\text{The function is not continuous at }}x = 4,{\text{ so there is a vertical}} \cr & {\text{asymptote at }}x = 4 \cr & {\text{Calculate the horizontal asymptotes, evaluating }} \cr & \mathop {\lim }\limits_{x \to - \infty } h\left( x \right){\text{ and }}\mathop {\lim }\limits_{x \to \infty } h\left( x \right) \cr & \mathop {\lim }\limits_{x \to - \infty } h\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{{2x + 3}}{{x - 4}} = \frac{{\mathop {\lim }\limits_{x \to - \infty } \left( {\frac{{2x}}{x} + \frac{3}{x}} \right)}}{{\mathop {\lim }\limits_{x \to - \infty } \left( {\frac{x}{x} - \frac{4}{x}} \right)}} \cr & = \frac{{\mathop {\lim }\limits_{x \to - \infty } \left( {2 + \frac{3}{x}} \right)}}{{\mathop {\lim }\limits_{x \to - \infty } \left( {1 - \frac{4}{x}} \right)}} = \frac{2}{1} = 2 \cr & \mathop {\lim }\limits_{x \to \infty } h\left( x \right) = \mathop {\lim }\limits_{x \to \infty } \frac{{2x + 3}}{{x - 4}} = \frac{{\mathop {\lim }\limits_{x \to \infty } \left( {\frac{{2x}}{x} + \frac{3}{x}} \right)}}{{\mathop {\lim }\limits_{x \to \infty } \left( {\frac{x}{x} - \frac{4}{x}} \right)}} \cr & = \frac{{\mathop {\lim }\limits_{x \to \infty } \left( {2 + \frac{3}{x}} \right)}}{{\mathop {\lim }\limits_{x \to \infty } \left( {1 - \frac{4}{x}} \right)}} = \frac{2}{1} = 2 \cr & {\text{Therefore, }} \cr & {\text{Vertical asymptote: }}x = 4 \cr & {\text{Horizontal asymptote: }}y = 2 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.