Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - Review Exercises - Page 239: 60

Answer

$+\infty$ (does not exist)

Work Step by Step

Note that $\sqrt{x^{2}+2}=\sqrt{x^{2}(1+\frac{2}{x^{2}})}=\sqrt{x^{2}}\cdot\sqrt{1+\frac{2}{x^{2}}}=|x|\sqrt{1+\frac{2}{x^{2}}}$ Since $ x\rightarrow\infty$ it is positive, so $|x|=x.$ $\displaystyle \lim_{x\rightarrow\infty}\frac{x^{3}}{\sqrt{x^{2}+2}}= \lim_{x\rightarrow\infty}\frac{x^{3}}{x\sqrt{1+\frac{2}{x^{2}}}}$ $= \displaystyle \lim_{x\rightarrow\infty}\frac{x^{2}}{\sqrt{1+\frac{2}{x^{2}}}}$ When $ x\rightarrow\infty$, the term $\displaystyle \frac{2}{x^{2}}$ approaches zero, and the denominator approaches 1. The numerator, $x^{2}$, becomes arbitrarily large. The limit does not exist. We write $\displaystyle \lim_{x\rightarrow\infty}\frac{x^{3}}{\sqrt{x^{2}+2}}=+\infty$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.