Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - Review Exercises - Page 239: 57

Answer

$-\infty$

Work Step by Step

$\displaystyle \lim_{x\rightarrow-\infty}\frac{3x^{2}}{x+5}= \displaystyle \lim_{x\rightarrow-\infty}[\frac{3x^{2}\div x^{2}}{(x+5)\div x^{2}}$ $=\displaystyle \lim_{x\rightarrow-\infty}\frac{3}{\frac{1}{x}+\frac{5}{x^{2}}}$ ... the terms $\displaystyle \frac{1}{x}$ and $\displaystyle \frac{5}{x^{2}}$ both approach 0 when $x\rightarrow\infty,$ The numerator is constant, and the denominator approaches zero, so the limit does not exist. It is either $\infty$ or $-\infty.$ Observe the function $\displaystyle \frac{3x^{2}}{x+5}$. It has a positive numerator whether x is negative or positive. But the numerator is negative when $ x\rightarrow-\infty$. So, the function has negative values when $ x\rightarrow-\infty$ Our answer is: $\displaystyle \lim_{x\rightarrow-\infty}\frac{3x^{2}}{x+5}=-\infty$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.