Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - Review Exercises - Page 239: 62

Answer

The limit does not exist

Work Step by Step

Divide both the numerator and denominator with x $...=\displaystyle \lim_{x\rightarrow-\infty}\frac{1}{2\cdot\dfrac{\sin x}{x}}=\frac{1}{2\cdot\displaystyle\lim_{x\rightarrow-\infty}\frac{\sin x}{x}}=...$ Knowing that $1\geq\sin x\geq-1,$ we divide with a NEGATIVE NUMBER x, $\displaystyle \frac{1}{x}\leq\dfrac{\sin x}{x}\leq-\frac{1}{x}.$ Since $\displaystyle \lim_{x\rightarrow-\infty}\frac{1}{x}=\lim_{x\rightarrow-\infty}\frac{-1}{x}=0 ,$ by the Squeeze thorem (Theorem 1.8), $0\displaystyle \leq\lim_{x\rightarrow-\infty}\frac{\sin x}{x}\leq 0,$ meaning that $\displaystyle \lim_{x\rightarrow-\infty}\frac{\sin x}{x}=0.$ $\displaystyle \frac{\sin x}{x}$ approaches 0 by alternating between the positive and negative So, $... \displaystyle \frac{1}{2\cdot\displaystyle\lim_{x\rightarrow-\infty}\frac{\sin x}{x}}$ = alternates between $+\infty$ and $-\infty$ (does not exist) The limit does not exist.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.