Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - 3.5 Exercises - Page 202: 9

Answer

\[ - 3\]

Work Step by Step

\[\begin{gathered} f\left( x \right) = \frac{{ - 6x}}{{\sqrt {4{x^2} + 5} }} \hfill \\ {\text{Evaluate }}f\left( x \right){\text{ for the given values and complete the table}}{\text{.}} \hfill \\ x = {10^0} \to f\left( {{{10}^0}} \right) = \frac{{ - 6\left( {{{10}^0}} \right)}}{{\sqrt {4{{\left( {{{10}^0}} \right)}^2} + 5} }} = - 2 \hfill \\ x = {10^1} \to f\left( {{{10}^1}} \right) = \frac{{ - 6\left( {{{10}^1}} \right)}}{{\sqrt {4{{\left( {{{10}^1}} \right)}^2} + 5} }} \approx - 2.981 \hfill \\ x = {10^2} \to f\left( {{{10}^2}} \right) = \frac{{ - 6\left( {{{10}^2}} \right)}}{{\sqrt {4{{\left( {{{10}^2}} \right)}^2} + 5} }} \approx - 2.9998 \hfill \\ x = {10^3} \to f\left( {{{10}^3}} \right) = \frac{{ - 6\left( {{{10}^3}} \right)}}{{\sqrt {4{{\left( {{{10}^3}} \right)}^2} + 5} }} \approx - 2.999998 \hfill \\ x = {10^4} \to f\left( {{{10}^4}} \right) = \frac{{ - 6\left( {{{10}^4}} \right)}}{{\sqrt {4{{\left( {{{10}^4}} \right)}^2} + 5} }} \approx - 3 \hfill \\ x = {10^5} \to f\left( {{{10}^5}} \right) = \frac{{ - 6\left( {{{10}^5}} \right)}}{{\sqrt {4{{\left( {{{10}^5}} \right)}^2} + 5} }} \approx - 3 \hfill \\ x = {10^6} \to f\left( {{{10}^6}} \right) = \frac{{ - 6\left( {{{10}^6}} \right)}}{{\sqrt {4{{\left( {{{10}^6}} \right)}^2} + 5} }} \approx - 3 \hfill \\ \boxed{\begin{array}{*{20}{c}} x&{f\left( x \right)} \\ {{{10}^0}}&{ - 2} \\ {{{10}^1}}&{ - 2.981} \\ {{{10}^2}}&{ - 2.9998} \\ {{{10}^3}}&{ - 2.999998} \\ {{{10}^4}}&{ - 3} \\ {{{10}^5}}&{ - 3} \\ {{{10}^6}}&{ - 3} \end{array}} \hfill \\ {\text{Therefore,}} \hfill \\ \mathop {\lim }\limits_{x \to \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to \infty } \left( {\frac{{ - 6x}}{{\sqrt {4{x^2} + 5} }}} \right) = - 3 \hfill \\ {\text{Graph}} \hfill \\ \end{gathered} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.