Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - 3.5 Exercises - Page 202: 11

Answer

\[5\]

Work Step by Step

\[\begin{gathered} f\left( x \right) = 5 - \frac{1}{{{x^2} + 1}} \hfill \\ {\text{Evaluate }}f\left( x \right){\text{ for the given values and complete the table}}{\text{.}} \hfill \\ x = {10^0} \to f\left( {{{10}^0}} \right) = 5 - \frac{1}{{{{\left( {{{10}^0}} \right)}^2} + 1}} = 4.5 \hfill \\ x = {10^1} \to f\left( {{{10}^1}} \right) = 5 - \frac{1}{{{{\left( {{{10}^1}} \right)}^2} + 1}} \approx 4.999 \hfill \\ x = {10^2} \to f\left( {{{10}^2}} \right) = 5 - \frac{1}{{{{\left( {{{10}^2}} \right)}^2} + 1}} \approx 4.9999 \hfill \\ x = {10^3} \to f\left( {{{10}^3}} \right) = 5 - \frac{1}{{{{\left( {{{10}^3}} \right)}^2} + 1}} \approx 4.999999 \hfill \\ x = {10^4} \to f\left( {{{10}^4}} \right) = 5 - \frac{1}{{{{\left( {{{10}^4}} \right)}^2} + 1}} \approx 5 \hfill \\ x = {10^5} \to f\left( {{{10}^5}} \right) = 5 - \frac{1}{{{{\left( {{{10}^5}} \right)}^2} + 1}} \approx 5 \hfill \\ x = {10^6} \to f\left( {{{10}^6}} \right) = 5 - \frac{1}{{{{\left( {{{10}^6}} \right)}^2} + 1}} \approx 5 \hfill \\ \boxed{\begin{array}{*{20}{c}} x&{f\left( x \right)} \\ {{{10}^0}}&{4.5} \\ {{{10}^1}}&{4.999} \\ {{{10}^2}}&{4.9999} \\ {{{10}^3}}&{4.999999} \\ {{{10}^4}}&5 \\ {{{10}^5}}&5 \\ {{{10}^6}}&5 \end{array}} \hfill \\ {\text{Therefore,}} \hfill \\ \mathop {\lim }\limits_{x \to \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to \infty } \left( {5 - \frac{1}{{{x^2} + 1}}} \right) = 5 \hfill \\ {\text{Graph}} \hfill \\ \end{gathered} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.