Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - 3.5 Exercises - Page 202: 12

Answer

\[4\]

Work Step by Step

\[\begin{gathered} f\left( x \right) = 4 + \frac{3}{{{x^2} + 2}} \hfill \\ {\text{Evaluate }}f\left( x \right){\text{ for the given values and complete the table}}{\text{.}} \hfill \\ x = {10^0} \to f\left( {{{10}^0}} \right) = 4 + \frac{3}{{{{\left( {{{10}^0}} \right)}^2} + 2}} = 5 \hfill \\ x = {10^1} \to f\left( {{{10}^1}} \right) = 4 + \frac{3}{{{{\left( {{{10}^1}} \right)}^2} + 2}} \approx 4.0294 \hfill \\ x = {10^2} \to f\left( {{{10}^2}} \right) = 4 + \frac{3}{{{{\left( {{{10}^2}} \right)}^2} + 2}} \approx 4.00029 \hfill \\ x = {10^3} \to f\left( {{{10}^3}} \right) = 4 + \frac{3}{{{{\left( {{{10}^3}} \right)}^2} + 2}} \approx 4.000003 \hfill \\ x = {10^4} \to f\left( {{{10}^4}} \right) = 4 + \frac{3}{{{{\left( {{{10}^4}} \right)}^2} + 2}} \approx 4.00000003 \hfill \\ x = {10^5} \to f\left( {{{10}^5}} \right) = 4 + \frac{3}{{{{\left( {{{10}^5}} \right)}^2} + 2}} \approx 4 \hfill \\ x = {10^6} \to f\left( {{{10}^6}} \right) = 4 + \frac{3}{{{{\left( {{{10}^6}} \right)}^2} + 2}} \approx 4 \hfill \\ \boxed{\begin{array}{*{20}{c}} x&{f\left( x \right)} \\ {{{10}^0}}&5 \\ {{{10}^1}}&{4.0294} \\ {{{10}^2}}&{4.00029} \\ {{{10}^3}}&{4.000003} \\ {{{10}^4}}&{4.00000003} \\ {{{10}^5}}&4 \\ {{{10}^6}}&4 \end{array}} \hfill \\ {\text{Therefore,}} \hfill \\ \mathop {\lim }\limits_{x \to \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to \infty } \left( {4 + \frac{3}{{{x^2} + 2}}} \right) = 4 \hfill \\ {\text{Graph}} \hfill \\ \end{gathered} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.