Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - 3.5 Exercises - Page 202: 35

Answer

$0$

Work Step by Step

$\dfrac {1}{2x+1}\leq \dfrac {1}{2x+\sin x}\leq \dfrac {1}{2x-1}$ $\lim _{x\rightarrow \infty }\dfrac {1}{2x+1}=\dfrac {1}{x\left( 2+\dfrac {1}{x}\right) }=\dfrac {1}{x\times \left( 2+0\right) }=\dfrac {1}{2x}=0$ $\lim _{x\rightarrow \infty }\dfrac {1}{2x-1}=\dfrac {1}{x\left( 2-\dfrac {1}{x}\right) }=\dfrac {1}{x\times \left( 2-0\right) }=\dfrac {1}{2x}=0$ $\Rightarrow 0\leq \lim _{x\rightarrow \infty }\dfrac {1}{2x+\sin x}\leq 0\Rightarrow \lim _{x\rightarrow \infty }\dfrac {1}{2x+\sin x}=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.