Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - 3.5 Exercises - Page 202: 16

Answer

a)$0$ b)$-\frac{2}{3}$ c)$-\infty$

Work Step by Step

a)$\lim _{x\rightarrow \infty }\dfrac {3-2x}{3x^{3}-1}=\dfrac {\dfrac {3}{x^{3}}-\dfrac {2x}{x^{3}}}{\dfrac {3x^{3}}{x^{3}}-\dfrac {1}{x^{3}}}=\dfrac {\dfrac {3}{x^{3}}-\dfrac {2}{x^{2}}}{3-\dfrac {1}{x^{3}}}=\dfrac {0-0}{3-0}=0$ b)$\lim _{x\rightarrow \infty}\dfrac {3-2x}{3x-1}=\dfrac {\dfrac {3}{x}-\dfrac {2x}{x}}{\dfrac {3x}{x}-\dfrac {1}{x}}=\dfrac {\dfrac {3}{x}-2}{3-\dfrac {1}{x}}=\dfrac {0-2}{3-0}=-\dfrac {2}{3}$ c)$\lim _{x\rightarrow 0}\dfrac {3-2x^{2}}{3x-1}=\dfrac {\dfrac {3}{x}-\dfrac {2x^{2}}{x}}{\dfrac {3x}{x}-\dfrac {1}{x}}=\dfrac {\dfrac {3}{x}-2x}{3-\dfrac {1}{x}}=\dfrac {0-\infty }{3-0}=-\dfrac {\infty }{3}=-\infty $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.