Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - 3.5 Exercises - Page 202: 7

Answer

\[2\]

Work Step by Step

\[\begin{gathered} f\left( x \right) = \frac{{4x + 3}}{{2x - 1}} \hfill \\ {\text{Evaluate }}f\left( x \right){\text{ for the given values and complete the table}}{\text{.}} \hfill \\ x = {10^0} \to f\left( {{{10}^0}} \right) = \frac{{4\left( {{{10}^0}} \right) + 3}}{{2\left( {{{10}^0}} \right) - 1}} = 7 \hfill \\ x = {10^1} \to f\left( {{{10}^1}} \right) = \frac{{4\left( {{{10}^1}} \right) + 3}}{{2\left( {{{10}^1}} \right) - 1}} \approx 2.263 \hfill \\ x = {10^2} \to f\left( {{{10}^2}} \right) = \frac{{4\left( {{{10}^2}} \right) + 3}}{{2\left( {{{10}^2}} \right) - 1}} \approx 2.2025 \hfill \\ x = {10^3} \to f\left( {{{10}^3}} \right) = \frac{{4\left( {{{10}^3}} \right) + 3}}{{2\left( {{{10}^3}} \right) - 1}} \approx 2.0025 \hfill \\ x = {10^4} \to f\left( {{{10}^4}} \right) = \frac{{4\left( {{{10}^4}} \right) + 3}}{{2\left( {{{10}^4}} \right) - 1}} = 2.0003 \hfill \\ x = {10^5} \to f\left( {{{10}^5}} \right) = \frac{{4\left( {{{10}^5}} \right) + 3}}{{2\left( {{{10}^5}} \right) - 1}} = 2 \hfill \\ x = {10^6} \to f\left( {{{10}^6}} \right) = \frac{{4\left( {{{10}^6}} \right) + 3}}{{2\left( {{{10}^6}} \right) - 1}} = 2 \hfill \\ \boxed{\begin{array}{*{20}{c}} x&{{{10}^0}}&{{{10}^1}}&{{{10}^2}}&{{{10}^3}}&{{{10}^4}}&{{{10}^5}}&{{{10}^6}} \\ {f\left( x \right)}&7&{2.263}&{2.2025}&{2.0025}&{2.0003}&2&2 \end{array}} \hfill \\ {\text{Therefore,}} \hfill \\ \mathop {\lim }\limits_{x \to \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to \infty } \left( {\frac{{4x + 3}}{{2x - 1}}} \right) = 2 \hfill \\ {\text{Graph}} \hfill \\ \end{gathered} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.