Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - 3.5 Exercises - Page 202: 10

Answer

\[0\]

Work Step by Step

\[\begin{gathered} f\left( x \right) = \frac{{10}}{{\sqrt {2{x^2} - 1} }} \hfill \\ {\text{Evaluate }}f\left( x \right){\text{ for the given values and complete the table}}{\text{.}} \hfill \\ x = {10^0} \to f\left( {{{10}^0}} \right) = \frac{{10}}{{\sqrt {2{{\left( {{{10}^0}} \right)}^2} - 1} }} = 10 \hfill \\ x = {10^1} \to f\left( {{{10}^1}} \right) = \frac{{10}}{{\sqrt {2{{\left( {{{10}^1}} \right)}^2} - 1} }} \approx 0.70888 \hfill \\ x = {10^2} \to f\left( {{{10}^2}} \right) = \frac{{10}}{{\sqrt {2{{\left( {{{10}^2}} \right)}^2} - 1} }} \approx 0.070712 \hfill \\ x = {10^3} \to f\left( {{{10}^3}} \right) = \frac{{10}}{{\sqrt {2{{\left( {{{10}^3}} \right)}^2} - 1} }} \approx 0.00707 \hfill \\ x = {10^4} \to f\left( {{{10}^4}} \right) = \frac{{10}}{{\sqrt {2{{\left( {{{10}^4}} \right)}^2} - 1} }} \approx 0.0007071 \hfill \\ x = {10^5} \to f\left( {{{10}^5}} \right) = \frac{{10}}{{\sqrt {2{{\left( {{{10}^5}} \right)}^2} - 1} }} \approx 0.00007071 \hfill \\ x = {10^6} \to f\left( {{{10}^6}} \right) = \frac{{10}}{{\sqrt {2{{\left( {{{10}^6}} \right)}^2} - 1} }} \approx 0 \hfill \\ \boxed{\begin{array}{*{20}{c}} x&{f\left( x \right)} \\ {{{10}^0}}&{10} \\ {{{10}^1}}&{0.70888} \\ {{{10}^2}}&{0.070712} \\ {{{10}^3}}&{0.00707} \\ {{{10}^4}}&{0.0007071} \\ {{{10}^5}}&{0.00007071} \\ {{{10}^6}}&0 \end{array}} \hfill \\ {\text{Therefore,}} \hfill \\ \mathop {\lim }\limits_{x \to \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to \infty } \left( {\frac{{10}}{{\sqrt {2{x^2} - 1} }}} \right) = 0 \hfill \\ {\text{Graph}} \hfill \\ \end{gathered} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.