Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - 3.5 Exercises - Page 202: 14

Answer

a) -$\infty$ b) -4 c) 0

Work Step by Step

a) $\lim\limits_{x \to \infty}$$\frac{-4x^2+2x-5}{x}$ = $\lim\limits_{x \to \infty}$-4x + 2 -$\frac{5}{x}$ = $\lim\limits_{x \to \infty}$-4x + 2 - 0 = -4($\infty$)+2 = -$\infty$ b) $\lim\limits_{x \to \infty}$$\frac{-4x^2+2x-5}{x^2}$ = $\lim\limits_{x \to \infty}$-4+$\frac{2}{x}$-$\frac{5}{x^2}$ = -4+0-0 = -4 c) $\lim\limits_{x \to \infty}$$\frac{-4x^2+2x-5}{x^3}$ = $\lim\limits_{x \to \infty}$-$\frac{4}{x}$+$\frac{2}{x^2}$-$\frac{5}{x^3}$ = -0+0-0 = 0
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.