Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.4 Trigonometric Substitutions - Exercises Set 7.4 - Page 513: 7

Answer

$$\sqrt {{x^2} - 9} - 3{\sec ^{ - 1}}\left( {\frac{x}{3}} \right) + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{\sqrt {{x^2} - 9} }}{x}} dx \cr & {\text{substitute }}x = 3\sec \theta ,{\text{ }}dx = 3\sec \theta \tan \theta d\theta \cr & = \int {\frac{{\sqrt {\left( {3\sec \theta } \right) - 9} }}{{3\sec \theta }}} \left( {3\sec \theta \tan \theta d\theta } \right) \cr & = \int {\frac{{\sqrt {9{{\sec }^2}\theta - 9} }}{{3\sec \theta }}} \left( {3\sec \theta \tan \theta d\theta } \right) \cr & = \int {\frac{{3\sqrt {{{\sec }^2}\theta - 1} }}{{3\sec \theta }}} \left( {3\sec \theta \tan \theta d\theta } \right) \cr & = \int {\frac{{3\sqrt {{{\tan }^2}\theta } }}{{3\sec \theta }}} \left( {3\sec \theta \tan \theta d\theta } \right) \cr & = 3\int {{{\tan }^2}\theta } d\theta \cr & = 3\int {\left( {{{\sec }^2}\theta - 1} \right)} d\theta \cr & {\text{integrating}} \cr & = 3\left( {\tan \theta - \theta } \right) + C \cr & = 3\tan \theta - 3\theta + C \cr & {\text{write in terms of }}x \cr & = 3\left( {\frac{{\sqrt {{x^2} - 9} }}{3}} \right) - 3{\sec ^{ - 1}}\left( {\frac{x}{3}} \right) + C \cr & = \sqrt {{x^2} - 9} - 3{\sec ^{ - 1}}\left( {\frac{x}{3}} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.