Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.4 Trigonometric Substitutions - Exercises Set 7.4 - Page 513: 11

Answer

$$\frac{{\sqrt {9{x^2} - 4} }}{{4x}} + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{dx}}{{{x^2}\sqrt {9{x^2} - 4} }}} \cr & {\text{substitute 3}}x = 2\sec \theta ,{\text{ }}dx = \frac{2}{3}sec\theta tan\theta d\theta \cr & = \int {\frac{{\frac{2}{3}sec\theta tan\theta d\theta }}{{{{\left( {\frac{2}{3}\sec \theta } \right)}^2}\sqrt {{{\left( {2\sec \theta } \right)}^2} - 4} }}} \cr & = \frac{3}{2}\int {\frac{{tan\theta d\theta }}{{\sec \theta \sqrt {4{{\sec }^2}\theta - 4} }}} \cr & = \frac{3}{4}\int {\frac{{tan\theta d\theta }}{{\sec \theta \sqrt {{{\sec }^2}\theta - 1} }}} \cr & = \frac{3}{4}\int {\frac{{tan\theta d\theta }}{{\sec \theta \sqrt {{{\tan }^2}\theta } }}} \cr & = \frac{3}{4}\int {\frac{{d\theta }}{{\sec \theta }}} \cr & = \frac{3}{4}\int {\cos \theta } d\theta \cr & = \frac{3}{4}\sin \theta + C \cr & {\text{write in terms of }}x \cr & = \frac{3}{4}\left( {\frac{{\sqrt {9{x^2} - 4} }}{{3x}}} \right) + C \cr & = \frac{{\sqrt {9{x^2} - 4} }}{{4x}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.