Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.4 Trigonometric Substitutions - Exercises Set 7.4 - Page 513: 23

Answer

$$\frac{{\sqrt 3 - \sqrt 2 }}{2}$$

Work Step by Step

$$\eqalign{ & \int_{\sqrt 2 }^2 {\frac{{dx}}{{{x^2}\sqrt {{x^2} - 1} }}} \cr & {\text{substitute }}x = \sec \theta ,{\text{ }}\,\,\,dx = \sec \theta \tan \theta d\theta \,\,\,\,\theta = {\sec ^{ - 1}}x \cr & \,\,\,x = 2 \to \theta = {\sec ^{ - 1}}\left( 2 \right) = \pi /3 \cr & \,\,\,x = \sqrt 2 \to \theta = {\sec ^{ - 1}}\left( {\sqrt 2 } \right) = \pi /4 \cr & \cr & {\text{write the integral in terms of }}\theta \cr & \int_{\sqrt 2 }^2 {\frac{{dx}}{{{x^2}\sqrt {{x^2} - 1} }}} = \int_{\pi /4}^{\pi /3} {\frac{{\sec \theta \tan \theta }}{{{{\sec }^2}\theta \sqrt {{{\sec }^2}\theta - 1} }}d\theta } \cr & \cr & {\text{use the pythagorean identity }}{\tan ^2} + 1 = {\sec ^2}\theta \cr & = \int_{\pi /4}^{\pi /3} {\frac{{\sec \theta \tan \theta }}{{{{\sec }^2}\theta \tan \theta }}d\theta } \cr & = \int_{\pi /4}^{\pi /3} {\frac{1}{{\sec \theta }}d\theta } \cr & = \int_{\pi /4}^{\pi /3} {\cos \theta d\theta } \cr & = \left[ {\sin \theta } \right]_{\pi /4}^{\pi /3} \cr & \cr & {\text{evaluate the limits}} \cr & = \sin \left( {\frac{\pi }{3}} \right) - \sin \left( {\frac{\pi }{4}} \right) \cr & = \frac{{\sqrt 3 }}{2} - \frac{{\sqrt 2 }}{2} \cr & = \frac{{\sqrt 3 - \sqrt 2 }}{2} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.