Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.4 Trigonometric Substitutions - Exercises Set 7.4 - Page 513: 19

Answer

$$\frac{1}{2}{\sin ^{ - 1}}{e^x} + \frac{1}{2}{e^x}\sqrt {1 - {e^{2x}}} + C$$

Work Step by Step

$$\eqalign{ & \int {{e^x}\sqrt {1 - {e^{2x}}} } dx \cr & {\text{substitute }}{e^x} = \sin \theta ,{\text{ }}{e^x}dx = \cos \theta d\theta \cr & = \int {\sqrt {1 - {{\sin }^2}\theta } } \cos \theta d\theta \cr & {\text{identity co}}{{\text{s}}^2}\theta + {\sin ^2}\theta = 1 \cr & = \int {\sqrt {{{\cos }^2}\theta } } \cos \theta d\theta \cr & = \int {{{\cos }^2}\theta } d\theta \cr & {\text{identity co}}{{\text{s}}^2}\theta = \frac{{1 + \cos 2\theta }}{2} \cr & = \int {\frac{{1 + \cos 2\theta }}{2}} d\theta \cr & = \int {\left( {\frac{1}{2} + \frac{{\cos 2\theta }}{2}} \right)} d\theta \cr & {\text{find antiderivative}} \cr & = \left( {\frac{\theta }{2} + \frac{{\sin 2\theta }}{4}} \right) + C \cr & = \frac{\theta }{2} + \frac{{\sin 2\theta }}{4} + C \cr & = \frac{\theta }{2} + \frac{{2\sin \theta \cos \theta }}{4} + C \cr & = \frac{\theta }{2} + \frac{{\sin \theta \cos \theta }}{2} + C \cr & {\text{write in terms of }}x \cr & = \frac{1}{2}{\sin ^{ - 1}}{e^x} + \frac{{{e^x}\left( {\sqrt {1 - {e^{2x}}} } \right)}}{2} + C \cr & = \frac{1}{2}{\sin ^{ - 1}}{e^x} + \frac{1}{2}{e^x}\sqrt {1 - {e^{2x}}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.