Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.4 Trigonometric Substitutions - Exercises Set 7.4 - Page 513: 34

Answer

$\frac{2\sqrt 5+ln(2+\sqrt5)}{4}$

Work Step by Step

Step 1: The arc length L=$\int^{1}_{0}$$\sqrt{1+(\frac{dy}{dx})^{2}}$dx In this problem, y=$x^{2}$; so, $\frac{dy}{dx}$=2x $\int^{1}_{0}$$\sqrt{1+(\frac{dy}{dx})^{2}}$dx=$\int^{1}_{0}$$\sqrt{1+(2x)^{2}}$dx Step 2: Now to evaluate this integral, we need to use trigonometry substitution method with the trigonometry relationship shown by the image below. $\sqrt{1+(2x)^{2}}$ is replaced by sec$\theta$ and dx is replaced by $\frac{1}{2}$$sec^{2}$$\theta$d$\theta$ $\int^{1}_{0}$$\sqrt{1+(2x)^{2}}$dx= $\frac{1}{2}$$\int^{}_{}$sec$\theta$($sec^{2}$$\theta$)d$\theta$=$\frac{1}{2}$$\int^{}_{}$$sec^{3}$$\theta$d$\theta$ Step 3: Here to evaluate $\int$$sec^{3}$$\theta$d$\theta$, let u=sec$\theta$ & dv= $sec^{2}$$\theta$d$\theta$. So, v=$\int$$sec^{2}$$\theta$d$\theta$=tan$\theta$ $\int$$sec^{3}$$\theta$d$\theta$=sec$\theta$·tan$\theta$-$\int$tan$\theta$(sec$\theta$·tan$\theta$)d$\theta$=sec$\theta$·tan$\theta$-$\int$$tan^{2}$$\theta$sec$\theta$d$\theta$ Then, we use the identity $tan^{2}$$\theta$= $sec^{2}$$\theta$-1 So $\int$$sec^{3}$$\theta$d$\theta$=sec$\theta$·tan$\theta$-$\int$($sec^{2}$$\theta$-1)sec$\theta$d$\theta$ When we split this integral, we would have $\int$$sec^{3}$$\theta$d$\theta$=sec$\theta$·tan$\theta$-$\int$$sec^{3}$$\theta$d$\theta$+$\int$sec$\theta$d$\theta$ We find we have just produced an equation about $\int$$sec^{3}$$\theta$d$\theta$, by solving it we have: $\int$$sec^{3}$$\theta$d$\theta$=$\frac{1}{2}$(sec$\theta$·tan$\theta$+ $\int$sec$\theta$d$\theta$)=$\frac{1}{2}$(sec$\theta$·tan$\theta$+ln|tan$\theta$+sec$\theta$|) Step 4: Let's plug in $\int$$sec^{3}$$\theta$d$\theta$=$\frac{1}{2}$(sec$\theta$·tan$\theta$+ln|tan$\theta$+sec$\theta$|) into $\int^{1}_{0}$$\sqrt{1+(2x)^{2}}$dx=$\frac{1}{2}$$\int^{}_{}$$sec^{3}$$\theta$d$\theta$ we got from step 2, and we have: $\int^{1}_{0}$$\sqrt{1+(2x)^{2}}$dx=$\frac{1}{4}$(sec$\theta$·tan$\theta$+ln|tan$\theta$+sec$\theta$|) Then, we convert $\theta$ back to x using the trigonometry relationship shown by the image below: $\frac{1}{4}$(sec$\theta$·tan$\theta$+ln|tan$\theta$+sec$\theta$|) = $\frac{1}{4}$[$\sqrt{1+(2x)^{2}}$ (2x)+ln|2x+$\sqrt{1+(2x)^{2}}$|] Finally, let's plug $x_{f}$=1 & $x_{i}$=0 into this expression for $\int^{1}_{0}$$\sqrt{1+(2x)^{2}}$dx, and we get the final answer, $\frac{2\sqrt 5+ln(2+\sqrt5)}{4}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.