Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.4 Trigonometric Substitutions - Exercises Set 7.4 - Page 513: 13

Answer

$$\frac{x}{{\sqrt {1 - {x^2}} }} + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{dx}}{{{{\left( {1 - {x^2}} \right)}^{3/2}}}}} \cr & {\text{substitute }}x = \sin \theta ,{\text{ }}dx = \cos \theta d\theta \cr & = \int {\frac{{\cos \theta d\theta }}{{{{\left( {1 - {{\left( {\sin \theta } \right)}^2}} \right)}^{3/2}}}}} \cr & {\text{simplify}} \cr & = \int {\frac{{\cos \theta d\theta }}{{{{\left( {1 - {{\sin }^2}\theta } \right)}^{3/2}}}}} \cr & {\text{identity co}}{{\text{s}}^2}\theta + {\sin ^2}\theta = 1 \cr & = \int {\frac{{\cos \theta d\theta }}{{{{\left( {{{\cos }^2}\theta } \right)}^{3/2}}}}} \cr & = \int {\frac{{\cos \theta d\theta }}{{{{\cos }^3}\theta }}} \cr & = \int {{{\sec }^2}\theta } d\theta \cr & {\text{find antiderivative}} \cr & = \tan \theta + C \cr & {\text{write in terms of }}x \cr & = \frac{x}{{\sqrt {1 - {x^2}} }} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.