Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.4 Trigonometric Substitutions - Exercises Set 7.4 - Page 513: 12

Answer

$$ - \ln \left| {\frac{{\sqrt {1 + {t^2}} + 1}}{t}} \right| + \sqrt {1 + {t^2}} + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{\sqrt {1 + {t^2}} }}{t}} dt \cr & {\text{substitute }}t = \tan \theta ,{\text{ }}dt = se{c^2}\theta d\theta \cr & = \int {\frac{{\sqrt {1 + {{\left( {\tan \theta } \right)}^2}} }}{{\tan \theta }}} se{c^2}\theta d\theta \cr & {\text{simplify}} \cr & = \int {\frac{{\sqrt {1 + {{\tan }^2}\theta } }}{{\tan \theta }}} se{c^2}\theta d\theta \cr & = \int {\frac{{\sec \theta }}{{\tan \theta }}} se{c^2}\theta d\theta \cr & = \int {\frac{{{{\sec }^3}\theta }}{{\tan \theta }}} d\theta \cr & = \int {\frac{{{{\sec }^3}\theta }}{{\tan \theta }}} d\theta = \int {\frac{{{{\sec }^2}\theta \sec \theta }}{{\tan \theta }}} d\theta \cr & {\text{identity se}}{{\text{c}}^2}\theta = 1 + {\tan ^2}\theta \cr & = \int {\frac{{\left( {1 + {{\tan }^2}\theta } \right)\sec \theta }}{{\tan \theta }}} d\theta \cr & {\text{distribute and simplify}} \cr & = \int {\frac{{\sec \theta + \sec \theta ta{n^2}\theta }}{{\tan \theta }}} d\theta \cr & = \int {\left( {\frac{{\sec \theta }}{{\tan \theta }} + \frac{{\sec \theta ta{n^2}\theta }}{{\tan \theta }}} \right)} d\theta \cr & = \int {\left( {\frac{1}{{\sin \theta }} + \sec \theta \tan \theta } \right)} d\theta \cr & = \int {\left( {\csc \theta + \sec \theta \tan \theta } \right)} d\theta \cr & {\text{find antiderivatives}} \cr & = - \ln \left| {\csc \theta + \cot \theta } \right| + \sec \theta + C \cr & {\text{write in terms of }}t \cr & = - \ln \left| {\frac{{\sqrt {1 + {t^2}} }}{t} + \frac{1}{t}} \right| + \sqrt {1 + {t^2}} + C \cr & = - \ln \left| {\frac{{\sqrt {1 + {t^2}} + 1}}{t}} \right| + \sqrt {1 + {t^2}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.