Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.4 Trigonometric Substitutions - Exercises Set 7.4 - Page 513: 29

Answer

$${\text{False}}$$

Work Step by Step

$$\eqalign{ & \sqrt {{x^2} - {a^2}} \cr & {\text{Let }}x = a\cos \theta ,{\text{ then}} \cr & \sqrt {{x^2} - {a^2}} = \sqrt {{{\left( {a\cos \theta } \right)}^2} - {a^2}} \cr & {\text{Simplifying}} \cr & \sqrt {{x^2} - {a^2}} = \sqrt {{a^2}{{\cos }^2}\theta - {a^2}} \cr & \sqrt {{x^2} - {a^2}} = \sqrt {{a^2}\left( {{{\cos }^2}\theta - 1} \right)} \cr & \sqrt {{x^2} - {a^2}} = \sqrt {{a^2}\left( { - {{\sin }^2}\theta } \right)} \cr & \sqrt {{x^2} - {a^2}} = a\sqrt {\left( { - {{\sin }^2}\theta } \right)} \cr & {\text{Therefore, the statement is false}} \cr & {\text{Use }}x = a\cos \theta {\text{ for }}\sqrt {{a^2} - {x^2}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.