Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.4 Trigonometric Substitutions - Exercises Set 7.4 - Page 513: 33

Answer

ln($\sqrt 10$+$\sqrt 5$-$\sqrt 2$-1)-ln2+$\sqrt 5$-$\sqrt 2$

Work Step by Step

The function y=lnx Arc length L=$\int^{2}_{1}${√[1+$(\frac{dy}{dx})^{2}$]} dx =$\int^{2}_{1}${√[1+$(\frac{1}{x})^{2}$]} dx =$\int^{2}_{1}$$\frac{√(x^{2}+1)}{√(x^{2})}$dx =$\int^{2}_{1}$$\frac{√(x^{2}+1)}{x}$dx (As x∈[1,2] is positive) Now, ($x^{2}$+1) in the numerator of our integrand has the form of ($x^{2}$+$a^{2}$), so we can try to substitute x with a·tanθ so that $x^{2}$+$a^{2}$=$a^{2}$$tan^{2}θ$+$a^{2}$=$a^{2}$(1+$tan^{2}θ$)=$a^{2}$$sec^{2}θ$ In this problem, a=1. So let x=tanθ, and dx=$sec^{2}θ$dθ. $\int^{2}_{1}$$\frac{√(x^{2}+1)}{x}$dx =$\int^{}_{}$$\frac{√(tan^{2}θ+1)}{tanθ}$($sec^{2}θ$dθ) = $\int^{}_{}$$\frac{√(sec^{2}θ)}{tanθ}$($sec^{2}θ$dθ) Now let's assume θ to be an acute angle, $secθ$>0, so √($sec^{2}θ$)=$secθ$ The expression = $\int^{}_{}$$\frac{(secθ)sec^{2}θ}{tanθ}$dθ Use the identity $sec^{2}θ$=1+$tan^{2}θ$, the expression=$\int^{}_{}$$\frac{(secθ)(1+tan^{2}θ)}{tanθ}$dθ Then we spit the integral and simplify it, the expression=$\int^{}_{}$$\frac{secθ}{tanθ}$dθ+$\int^{}_{}$secθ·tanθdθ $\int^{}_{}$$\frac{secθ}{tanθ}$dθ=$\int^{}_{}$$\frac{1}{tanθ·cosθ}$dθ=$\int^{}_{}$$\frac{1}{sinθ}$dθ=$\int^{}_{}$$cscθ$dθ=ln|cotθ-cscθ| & $\int^{}_{}$secθ·tanθdθ=secθ So the result of our integral = ln|cotθ-cscθ|+secθ Finally, we convert θ back to x based on the trigonometry relationship shown by the image below: ln|cotθ-cscθ|+secθ=ln |$\frac{1}{x}$-$\frac{√(x^{2}+1)}{x}$|+√($x^{2}$+1) When we plug in $x_{f}$=2, $x_{i}$=1, we have the final answer: ln($\sqrt 10$+$\sqrt 5$-$\sqrt 2$-1)-ln2+$\sqrt 5$-$\sqrt 2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.