Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 8 - Section 8.2 - The Quadratic Formula - Exercise Set - Page 608: 72

Answer

$x = \frac{3±\sqrt{5}}{2}$

Work Step by Step

$\frac{x-1}{x-2} + \frac{x}{x-3} = \frac{1}{x^2-5x+6}$ ${x^2-5x+6}$ can be rewritten as $(x-2)(x-3)$ Simplify by multiplying both sides by the least common multiple: $(x-2)(x-3)$ $\frac{x-1}{x-2} ⋅(x-2)(x-3)+ \frac{x}{x-3} ⋅(x-2)(x-3)= \frac{1}{(x-2)(x-3)}⋅(x-2)(x-3)$ $(x-1)(x-3) + x(x-2) = 1$ $x^2-4x+3+x^2-2x=1$ $2x^2-6x+3=1$ $2x^2-6x+2=0$ $2x^2-6x+2=0$ Solve by using the quadratic formula: $x = \frac{-b±\sqrt{b^2-4ac}}{2a}$ $a=2$, $b=-6$, $c=2$ $x = \frac{-(-6)±\sqrt{(-6)^2-(4⋅2⋅2)}}{2(2)}$ $x = \frac{6±\sqrt{36-16}}{4}$ $x = \frac{6±\sqrt{20}}{4}$ $x = \frac{6±\sqrt{4⋅5}}{4}$ $x = \frac{6±2\sqrt{5}}{4}$ $x = \frac{3±\sqrt{5}}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.