Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 8 - Section 8.2 - The Quadratic Formula - Exercise Set - Page 608: 71

Answer

$x = \frac{-1±\sqrt{21}}{2}$

Work Step by Step

$\frac{1}{x^2 - 3x + 2} = \frac{1}{x+2} + \frac{5}{x^2-4}$ Simplify by multiplying both sides by the least common multiple $(x-2)(x+2)(x-1)$. Thus, the equation becomes: $\frac{1}{(x-2)(x-1)}⋅ (x-2)(x+2)(x-1)= \frac{1}{x+2}⋅(x-2)(x+2)(x-1) + \frac{5}{(x+2)(x-2)}⋅(x-2)(x+2)(x-1)$ $x+2=(x-2)(x-1) + 5(x-1)$ $x+2=x^2 - 3x + 2 + 5x-5$ $x+2=x^2 + 2x-3$ $x^2 + x-5=0$ Solve by using the quadratic formula: $a=1$, $b=1$, $c=-5$ $x = \frac{-b±\sqrt{b^2-4ac}}{2a}$ $x = \frac{-1±\sqrt{(-1)^2-(4⋅1⋅-5)}}{2(1)}$ $x = \frac{-1±\sqrt{1-(-20)}}{2}$ $x = \frac{-1±\sqrt{21}}{2}$ $x = \frac{-1±\sqrt{21}}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.